Technical Report
CMU/SEI-94-TR-8
ESC-TR-94-008
May 1994

T ADpsesT7Y7

Mapping a Domain Model and
Architecture to a Generic Design

A. Spencer Peterson
Jay L. Stanley Jr.

Application of Software Models Project

Approved for public release.
Distribution unfimited.

Software Engineering Institute

Camegie Mellon University
Pittsburgh, Pennsyivania 15213

[P SRN - =

This report was prepared for the

SEI Joint Program Office

HQ ESC/ENS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

Review and Approval
This report has been reviewed and is approved for publication.

FOR THE COMMANDER

LY Sonet.

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.
Copyright © 1994 by Carnegie Mellon University

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause
& 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994.

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Govemment agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633. ’

Use of any trademarks in this report is not intended in any way 1o infringe on the rights of the trademark holder.

Table of Contents

1 Introc..uon and Background

1.1

Audience

1.2 Purpose
1.3 Overview of the Movement Cor:.trol Domain

14

Report Overview — How to Read This Document

2 Context for the Mapping Process

2.1
2.2
2.3

24

Using Models ic*ware Development

The Domain M.aei - FODA Products and Representations
The Architecture --- “he OCA

23.1 Overview of the OCA,

232 OCA Components
2.3.2.1 Objects
2.3.2.2 Controllers
23.2.3 Imports
2.3.24 Exports
2.3.2.5 Signatures
2.3.2.6 Surrogates
2.3.2.7 Executives

2.3.3 Flow of Control and Data in the OCA
The Generic Design

3 Overview of the Mapping Process

3.1
3.2
33
34

35
3.6

Partitioning the Process

Viewing the Process as a Normal S/W Development Process
Use of the OCA in the Development of Reusable Software
Benefits from Reusing OCA Structures

3.4.1 Consistency of Form Within Applications

3.4.2 Separation of Control Flow and Data Flow
Limitations of the Mapping Process

A Roadmap for the Details of the Mapping Process

4 The Domain Design Process

4.1

Select Features from Domain Model

4.2 Create Object Specifications

WO NN -

~

10
13
14

14
14
15
16
16
16
18
19

19
21

23
23
25
26
26
26
27
27
28

g8

CMU/SEI-94-TR-8

G e R
Bt Mg

ST
%

xﬂ’- o

v

e

4.3
4.4

4.2.1 Identify Objects

422 Derive Object Operations and Input/Outputs

Create the Subsystem Specifications

Create a Surrogate Specification for Each Logical/Physical Device

§ The Domain implementation Process

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Identify or Create Applicable System Engineering Units Package(s)
Create Subsystem _Types Package

Create Object Signatures Package

Create Object Manager Package Specification

Create Subsystem/Surrogate Signatures Package

Create Subsystem/Surrogate Controller Package Specification
Create Subsystem/Surrogate Import and Export Packages

Create Subsystem/Surrogate Controller Package Body

Create Object Manager Package Body

6 Application Development Using a Generic Design

6.1
6.2

6.3

Create an Application Signatures Package

Complete Packages Making Use of Application Signatures
6.2.1 Complete Surrogate Signatures Package

6.2.2 Complete Surrogate Controller Package Specification
6.2.3 Complete Surrogate import/Export Packages

6.24 Complete Subsystem Import Package Body

6.25 Compete Surrogate Controller Package Body
Complete the Executive Template

7 Conclusions and Future Directions

74
7.2

Conclusions

Future Directions
7.2.1 Near-Term
722 Long-Term

Appendix A The Domain Design Process

Appendix B The Domain implementation Process

Appendix C Using a Generic Design in Application Deveiopment

35
36
37

39
41
42
43
43

45
46
47
48

51
51
52
52
52
53
53
53
53

55
55
56

33

n

1 .
YA 2% YA P EIOE C

—
RN

Appendix D Specification Form Templates
Appendix E Ada Code Templates
Appendix F implementation Issues Affecting Reuse

Appendix G Sample Completed Specification Forms

Appendix H Movement Control Example Code

75
79
91
97
103
Accession Yor 2~
NTIS GRA&I &
DTIC TAB 0
Unannounced a

Just il’icaf.i.on..____ﬁ

Diseribgtlﬂ‘ i ‘

By

Avallability Geden

"‘1 Spwelll

vail and/or

e athy

List of Figures

Figure 1-1: Roadmap for the Mapping Process

Figure 2-1: The Mapping Process — Its Inputs and Outputs
Figure 2-2: Use of Models in an Engineering Framework

Figure 2-3: Example of an 001 Information Model

Figure 2-4: Example Representation of an 001 Features Model
Figure 2-5: The OCA Subsystem Model

Figure 2-6: Signatures as Conceptual Links to Object Functionality
Figure 2-7: Overall Flow of Data and Control in the OCA

Figure 2-8: Convoy Planner Generic Design

Figure 3-1: Decomposition of the Mapping Process

Figure 3-2: Migration of Domain Data to Specifications and Code
Figure 3-3: Mapping Design Elements to Process Steps

Figure 5-1: Subsystem Implementation Model

Figure 7-1: A Development Life Cycle Utilizing the Mapping Process
Figure F-1: Tasking Architecture Using a Separate X Event Loop

.
-
- . - - -
h " h) "
“ e . ,y"'_ .o
o P iy e ;-

List of Tables

Table 4-1: Summary of the Domain Design Process

Table 4-2: Mapping Domain Model Constructs to Specification Forms
Table 5-1: Summary of the Design Implementation Process

Table 5-2: Mapping from Specification Forms to Code Constructs
Table 6-1: Summary of the Application Development Process

31
32
39
41
51

v vili CMU/SEI-84-TR-8

Mapping a Domain Model and
Architecture to a Generic Design

Abstract: In contrast to the number of reports on domain analysis, littie work
has been done in describing the utilization of domain analysis results in the
development of generic designs for building applications in a domain. This
report describes a process for mapping domain information in Feature-
Oriented Domain Analysis (FODA) into a generic design for a domain. The
design includes supporting code components that conform to the Object
Connection Architecture (OCA), a model for structuring software systems. A
process for the use of the design in implementing applications is included. The
processes and products described herein augment the final phase of domain
analysis (or engineering) described in the original FODA report. This report
also documents the continuing work of applying FODA to the movement control
domain. The design and Ada code examples for the domain used in the
de _ument are from pro.otype software, created in part to test the processes
presented.

1 Introduction and Background

There has been a significant amount of research in the area of domain analysis. [Prieto-Diaz
91] provides an excellent introduction into the state of domain analysis as a software
engineering activity. One important aspect that has been virtually untouched in the pertinent
literature is: how does one select and/or develop a design for use in building applications from
the products of domain analysis? Nearly all domain analysis methods either do not address
this issue at all or assume there is a design to be (re)used from the existing system(s)
analyzed. There is no notion of a generic design that reflects the allocation of capabilities to
subsystems or components at the logical level that is:

¢ independent of implementation considerations such as centralized versus
distributed processing, and

¢ usable for all systems to be built and maintained within a program family’
from the domain.

This report describes our efforts in this area, which are founded upon the following two
premises:

1. A domain model, the product of domain analysis, embodies the requirements
for software in a domain.2

- The term “program family” is used as defined in [Pamas 76).

Z The Feature-Oriented Domain Analysis (FODA) method, developed by the Software Engineering Institute
(SEI), is one domain analysis method. It captures and organizes information (especially the requirements) from
existing systems and their development histories, knowledge captured from domain experts, underlying
theory, and emerging technology. FODA emphasizes the understanding of the commonalities and differences
in previous and anticipated systems in that domain. The pertinent processes and products of FODA are
described briefly in Section 2.2. A more compiete description of FODA is given in [Kang 80].

CMU/SEI-94-TR-8 1

2. Software architectures® exist that provide a framework for generic designs.
Generic designs increase the reusabilty of software components
implemented to fit within that design by creating patterns for the components.

This report describes a process for mapping domain information captured in FODA models
into a generic design for software in a domain. The Object Connection Architecture (OCA) is
the architectural model used to structure the generic design. The use of the OCA in structuring
software systems is described briefly in Saction 2.3 of this report and will be fully documented
in a subsequent report.

1.1 Audience

This report is intended to support current and future users of the FODA method of domain
analysis in their efforts to produce reusable software assets at the design and large scale
component level. Software architects and designers (such as the Core Asset team referred to
in [Withey 94)) will derive the most benefit from the report, as they will be following the process
and creating the assets. Domain analysts will need to be cognizant of the process deszribed
in Chapters 4 and 5 to understand the utilization of the information gathered in the domain
analysis process.

This report also documents the SEl's efforts to utilize the processes and procedures described
herein for the development of prototype software for the Army movement control domain from
FODA models documented in [Cohen 92].

This report is one of four reports which further document the FODA method and its use. These
reports are products of the SEI's continued work in domain analysis and its application within
the software development lifecycle. The other three reports are:

1. Integrating 001 Tool Support into the Feature-Oriented Domain Analysis
Methodology {Krut 93],

2. A Taxonomy of Coordination Mechanisms Used in Real-Time Software
Basad on Domain Analysis [Fernandez 93], and

3. Implementing Model-Based Software Engineering in Your Organization: An
| Approach to Domain Engineering [Withey 94).

1.2 Purpose

This report delineates a process and products which satisfy the intent of the FODA
Architectural Modeling process and migrates the use of FODA products into the design and
implementation of code. This migration is illustrated in Figure 1-1. It shows that the mapping
procass uses domain model and architecture information to produce a generic design that, in
tuin, is used in an application development process to produce application code.

3 The term software architecture is defined in Section 2.3,

2 CMU/SE-04-TR-8 bt

vy

I.':

L3

. . S Lo

Ip———— ; : R CUTITRTRR R e A RS Y
. W '1 «"?:.,u* R R R Y ﬁ}éuﬂsﬂ,f&'uﬁ%;ﬁ?r,.‘v "

Domain Model

Application
Development

Mapping
Process / Generic

Architecture

Figure 1-1: Roadmap for the Mapping Process

Although FODA products are assumed to be the inputs to the processes described in this
reports, usable results may be possible through use of the products of other domain analysis
methods. The alternative method used must capture the equivalent information contained in
FODA Domain Model products such that persons attempting to follow the processes can
locate and use the specific inputs for each step. The resulting software structures may be
implemented in many popular programming languages, such as Ada, C, C++, and PASCAL.
The Ada programming language is used in the software examples described in this document.

This report:

* demonstrates the concept of generic designs for program families,

¢ provides practical guidance for the development of such designs, and their
use in building software systems, and

¢ advances the state of the practice in Domain Engineering and software
architectures.

The mapping process described herein is intended for use by software engineers who need
to develop a reusable software design and code implementation using FODA product models
as the basis for requirements to be satisfied by software systems in a domain.

1.3 Overview of the Movement Control Domain

Before going into the mapping process in any detail, it is appropriate to provide a brief
overview of the domain from which the examples in the subsequent chapters and appendices
are derived.

|
J.

O oy

Movement Control is the planning, routing, scheduling, control, and in-transit visibility of
personnel, units, equipment, and supplies moving over lines of communication in accordance
with the directives of command planning [USArmy 90]. The most common application within
the this domain used by the maijority of Army units is Convoy Planning. The operational
features needed to provide convoy planning capabilities include:

¢ Convoy Building - selecting the vehicles for use in transporting whatever is
to be moved and organizing them into a convoy.

* Routing - selecting a route using the available road network (and potentially
off-road paths), taking into account the capabilities and characteristics of the
vehicles involved.

* Scheduling - determining the travel time for a given convoy and route
combination, accounting tor additional stops as required.

Important data entities for these features within convoy planning include:

* Units - encompassing personnel, equipment, etc.

* Road Network - a structure containing information about points of interest
and the roads between them.

¢ Schedules - a structure containing information about events, where an event
is a combination of a time and an occurrence of interest.

[Cohen 92] provides a comprehensive description of the movement control domain model.
This description has been given to enable the reader’s understanding of more specific issues
in the movement control domain used as examples to illustrate important concepts in the
mapping process.

1.4 Report Overview — How to Read This Document
The remainder of this report is organized as follows:

Chapter 2 lays the foundation for the mapping process by:
1. describing the mapping process in terms of
a. the application of various classes of software models, and

b. how other software engineering processes can apply the different
classes of models in obtaining their resuits.

2.giving a brief description of the Domain Modeling phase of FODA,
concentrating on the products of interest derived during that phase and
the representation of those products.

3. describing the OCA in terms of its structures and concepts.

Chapter 3 presents the mapping process in terms of the domain model
information used, the products generated, and the applicability of the
products to the development process.

Chapter 4 presents the Domain Design process for developing specifications
for reusable dornain-specific abstractions from information captured in FODA
models.

Chapter 5 presents the Domain Implementation process for mapping those
specifications onto the OCA as a generic design with supporting code
components.

Chapter 6 describes the Application Development process for the creation of
an application using components built as described and an executive built
using a standardized iemplate.

Chapter 7 presents a brief set of conclusions and a discussion of future
directions for the mapping process.

in addition to the material in the main body of the report, there are 8 appendices
contents are described below:

1.

Appendix A presents the details of the Domain Design process via the
completion of prescribed forms.

. Appendix B presents the details of the Domain Implementation process via

creating code units that satisfy the previous specifications through the
mapping of form information onto various code constructs.

. Appendix C presents the details of the Application Development process for

the use of the generic design and its components in the creation of an
instance that satisfies specific requirements.

. Appendix D lists the Specification Forms for the Subsystem, Object and

Surrogate abstractions described in the OCA.

. Appendix E lists the code templates for implementing the OCA abstractions

using the Ada programming language.

. Appendix F discusses some of the implementation issues dealt with during

the trial usage of these processes, focusing on Ada language interface
issues, and the idiosyncrasies found in implementations of Ada input/output
packages. It also provides some specific examples of “C" code used in the
user interface portion of the movement control prototype used as the example
case in the report, focused mainly on the description of several reusable
abstractions for X/Motif input and output.

. Appendix G provides examples of completed specification forms for an

example subsystem, object, and surrogate from the Army movement control
domain.

Appendix H provides an extensive sample of code from the Army movement
control domain as empirical evidence of the viability of the processes
presented in this report.

whose

i

e,

AR S

T

2 Context for the Mapping Process

The mapping process for moving from domain models to generic designs is illustrated in
Figure 2-1, in SADT* form. The major input is the domain model, with its collective information
about the capabilities, data organization, and processing flow for systems in the domain. The
architecture is a contro/ input, because it structures the output, the generic design. The major
resources required are the time of the domain engineers to perform the process and the tools
they use to capture the results.

Architecture
Domain
Model Mapping Generic Design
Process
Domain
Engineers,
Tools

Figure 2-1: The Mapping Process — Its inputs and Outputs
The mapping process is a series of both synthesis and analysis steps, which is broken into two
major groupings:
1. Analysis of the domain model and its contents to find:
a. the major physical or logical abstractions that maintain state, the
domain objects, and
b. the group of related features that describe the subsystemns which
utilize the objects in their implementation.

The subsystems and objects are specified using forms (described in the
report) to collect the applicable information from the domain model structures.

2. Mapping of the subsystem and object specifications onto code templates,
using the information collected or referenced on the specification forms to
compiete the templates.

4 See [Marca 88) for a compiste explanstion of the SADT notation.

cems

This chapter first provides the reader with a brief expianation of the basic theory for software
engineering with models and its applicability to the mapping process. Then the reader is
introduced to the models integral to the mapping process, the FODA domain mode! and its
products and the Object Connection Architecture.

2.1 Using Models in Software Development

Application of the FODA method resuits in various products, most of which are expressed in
the form of models. Just as models are the basis for describing domain information, models
should be the basis for describing software designs and for the performance of software
engineering tasks in general. A software model® is:

1. A view of a domain consisting of abstractions important for analyzing and
implementing a capability planned for a software system.

2. A representation of a system that focuses on a single concem, usually by
simplitying detail.

There are various kinds of models that can be defined for the engineering of software:

¢ Abstract model - A set of concepts, principles, and rules used to prescribe
the structure, allowable content, and key properties of a concrete model. The
set is constructed with the expectation that, through use of the mode|,
structure and behavior can be added to create concrete models.

The notion of an abstract model is equivalent to that of an abstract class in
Objected Oriented Design, such as described in [Booch 93]. An abstract
model is incomplete when initially defined. it requires the insertion of domain
information to be fully defined.

Abstract models include meta-level concepts that are independent of any
domain. Examples include:

« the notions of Aggregation/Decomposition, Generalization/Specialization
and Parameterization, used as the guiding principles for the processes

and products of FODA.®
« the use of consistent form and the various ‘ilities’ (understandability,
modifiability, etc.) of software designs and code.
 Concrete model - A view of a domain that organizes domain information in
elements that encapsulate differences among existing and/or potential
implementations (members of the program family).
* Product - A software system delivered to a customner which contains
instances of concrete models.

& The definitions on this section are taken from [Withey 94},
& See Section 3.1 of [Kang 90} for a more thorough explanation to the concepts used.

This definition of product is not meant to preciude the DoD view of software
deliverables, which includes the development and delivery of specification
and design documentation as interim products. A software specification can
be delivered containing an instance of a domain model and a design
document can contain an instance of a generic design.

A SADT diagram showing the use of models in a software process is given in Figure 2-2. It
shows that a model-based software process is the result of:

* using previous information or a model as input,
* applying a model at a higher conceptual level than the input as a control, and
e producing as output a model at the same conceptual level as the input.

Control Model
(e.g., FODA Modeling Concepts)

4 N

Input ESoftwar,e Output
ﬁ H
(e.g., Domain nglneenng (e.g., FODA Domain Model)

Information) P rocess
K (e.g., FODA))

Software
Engineers
(e.g., Domain Analysts)

Figure 2-2: Use of Models in an Engineering Framework

This generalized model-based process is the conceptual basis for an overall software
engineering life cycle entitted Model-Based Software Engineering (MBSE), a concept first
f described by the SE! in [Feiler 93]. MBSE enables organizations to build software applications
' which must evolve with a minimum of rework and scrap to meet changes in mission and

technology. MBSE involves building models of the requirements and design for a family of
‘ software applications. Application generators and component libraries that support the
' software modeis are aiso built. MBSE is a focus area for the SEI's Engineering Techniques
: Program and is the subject of a recent SEI report [Withey 94].

S I NSO DA e s

The usage and reification of modeis from abstractions to domain specific concrete modeis and
on into delivered software products is the fundamental process in MBSE and occurs in many
forms. Concrete models are created from the application of abstract models, and products are
derived from concrete models. As an example, FODA is the applic tion of domain modeling
concepts (at the abstract level) to information on existing systams and new technologies. This
process is shown in the italicized notations on the named flows and process box in Figure 2-2.

The mapping process shown in Figure 2-1 supports this notion of model-based software
processes. The architecture, used as the control input, is an abstract model which is applied
to the domain model to produce the generic design output. In Chapter 3 of this report, the
mapping process will be refined using this model-based view.

To better understand the mapping process, the models used as its input, control, and output
(FODA products, the OCA, and the Generic Design, respectively) are described in the next
three sections. The resources (Domain Engineers and tools) are not further described in this

report.

2.2 The Domain Model — FODA Products and Representations

The FODA method, as described in [Kang 90), describes three major products created during
its Domain Modeling phase. They are:

1. The Information Model,” which captures and defines the domain knowledge
and data requirements that are essential in implementing applications in a do-
main.

2. The Feature Model, which captures the end user’s understanding of both the
general and specific capabilities of applications in a domain and describes:

a. the context of domain applications, depicting the variability of the
users and environment for applications in a domain,

b. the needed operations and their attributes, and
C. representation variations.

3. The Operational Model,® which identifies the functionality and behavior (both
commonalities and differences) of applications in a domain. It provides the
foundation upon which the software designer understands how to provide the
features and make use of the data entities in the previous two models
described.

[Krut 83] documents the use of a tool to capture the products of the FODA domain model. The
tool is “001" from Hamilton Technologies, Inc., documented in [001SRM]. Since this tool was

£ Earlier reports used the term Entity-Relationship Model, but an ER model is only one format for an information
Model. A semantic data modet or object mode! are altemative formats.

& Earlier reports used the term Functional Model.

10 CMU/SEL-84-TR-8

used to represent two of the three domain models, the pertinent 001 notation will be briefly
explained in the following paragraph and examples of its use will be shown.

The basis of FODA Information Modeling is composed of two basic relationships: the is-a and
consists-of.? The is-a relationship is further refined by adding a third relationship, the is-set-
of. Using these relationships, the entities used to describe the information content of a domain
are described and organized. Such an organization can be shown using the 001 notation as
described below.

task_force(tupieof:4)

intelligence(tupiect:2)

/}I(tupboﬂ:)

technical_intelligence(tupleot:1)

route{osetof) transportation_intelligence(tupieot:3)
id(str)

equipment({str) networks(osstof)
unit_locations(osstof) facilities(str)

toe_assets(tuplect:3) supply_points(asetof) network_segments(definedas: road_information)

Figure 2-3: Example of an 001 Information Model

The 001 TMap (or TypeMap) provides a tree-like structure with each node corresponding to
an object type. Figure 2-3, shown above, depicts an abbreviated version of the Information
Model for the movement control domain. The TMap enables the modeling of the
decomposition of objects using sets, arrays, trees, classification, reference, extension, and
primitive types. These, in tum, map readily to the constructs and semantic notions of many
programming languages. The concepts of generalization, aggregation, and attributes were
transformed using the TupleOf, OSetOf, and OneOf abstract types within the 001 TMap syntax
as follows:

* The decomposition of a parent object into different component parts (children
types) was represented by the TupleOf abstract type, representing the
semantics of the record construct. These component parts may be objects of
the same type or objects of different types.

% See Section 5.2 of [Kang 90] for a more detalled description of the usage of thess constructs in FODA.

B YRR TR SIS] A 4 e

A et e = i +

. T . P T e

w o, Tl TS A T TN L
A I Ry, x@" e A Ps
ettt e i i Py e oy

* The one-to-many, parent-child relationship was represented with the OSetOf
abstract type. The OSetOf abstract type represents an ordered set of objects,
containing zero or more objects of the same type. The OSetOf type can be
implemented in any number of ways; lists and arrays are two examples.

¢ There exist entities (or objects) in which there are many possibie children

types yet, when an object instance is created, exactly one of the child types

exists. These are represented by the OneOf abstract type. Languages that

support variant structures readily implement these semantics.
To use an 001 model, the user (or tool using the internal representation) traverses the tree and
uses the semantics corresponding to the 001 type at each node to understand the model and
its contents. For example, the movement control environment, shown at the top of Figure 2-3,
consists of six data aggregates, as represented by the TupleOf notation. One of these, the
distribution_plans entity, consists of two items. The TCP (the Traffic Control Plan) is shown as
an OSetOF of designated_routes, describing the notion of a collection or subset of the
available roads which will be placed under specific control to regulate their usage. Under the
transportation subtree and its methods branch, the four entities shown with the boolean
options describe the notion used to the optional incorporation of road, water, rail, and air as
transport mechanisms.

The 001 notation fully represents the semantic model concept of the FODA Information Model!.
The semantic model captures the bulk of the data requirements for the domain.

movement(tupleot:4)

convoy_building(tupleof:2)

Figure 2-4: Example Representation of an 001 Features Model

e

¥

;
b PR
wba BN E N

12 CMU/SEI-04-TR-8

T

The 001 TMap notation is also used to represent the features model. Figure 2-4 on the
following page depicts a portion of the movement control features model, focusing on the
features relevant to convoy planning. The features were identified and structured as optional,
alternative, or mandatory as described in the FODA method, in the following ways:

o the optional features are modeled as leaf-node objects of type Boolean,; this
allows their later designation of their usage with True or False selection,

« the alternative features are modeled as a OneQf abstract type, which readily
captures the notion of alternative,

¢ and mandatory features as a TupleOf abstract type.

Since a TMap follows the same tree-like structure as the baseline features diagram, the
concept of “reachability” defined in the FODA report is maintained within a TMap.

The Operational Model is captured using any number of CASE tools which allow for the
integrated definition of the functional and behavioral characteristics of applications software in
a domain. The SEI reports cited previously describe the use of various tools to support this
model.

Now that the pertinent FODA products have been described, it is time to discuss the
architectural concepts needed to produce a generic design. The concepts are embodied in the
OCA, which is the subject of the next section.

2.3 The Architecture — The OCA

In [Shaw 90}, the term software architecture is defined as: a software design at a level of
abstraction that focuses on the pattems of systems organization that describes how
functionality is partitioned and how those elements are interconnected. There are two key
parts to an overall organizational pattem, a partitioning strategy and a coordination model.

A partitioning strategy is the criteria used to decompose large software problems into
smaller subproblems and the allocation of those subproblems to software components that will
solve them.'© In the OCA, the partitioning strategy is realized by building blocks such as
subsystem and surrogate structures and their components, and the executive. The
coordination model is the glue that binds separate activities into an ensemble [Gelemter 92].
in the OCA, the coordination model! is realized in rules and templates that determine how the
building blocks interact with one another.

A key attribute of a good architecture is the separation of the coordination strategy or model
(the flow of control through the software, or mission) from the providers of operations or
services (the building blocks or components). This separation:
¢ allows a change in operation, or service provided (potentially due to a new
piece of equipment or information), without requiring a change in the existing
mission software, and
10 See [Abowd 93] and [USAF 93].

CMU/SEL-94-TR-8 13

* allows a change in the mission without necessarily requiring a change in the
service providers carrying out that mission.
Because of the clear separation between the partitioning strategy and coordination model,
program families can be designed using the OCA that are highly modifiable with respect to
broad classes of change. The next section presents an overview of the OCA, focusing on the
partitioning strategy and coordination model embodied within it.

2.3.1 Overview of the OCA

The OCA'! is an abstract model that provides an architectural pattern for the packaging of
software. The architectural pattern embodied in the OCA allows software developers and
reusers to distinguish the design and packaging of the service providers and the code
elements that are mission oriented. The three architectural elements are called:

1. objects (service providing elements)
2. controllers (elements that embody a mission through use of objects)
3. executives (mission activator elements)

The architectural elements of the OCA and the components used to implement the elements
are described further in the following paragraphs.

23.2 OCA Components

A controller and its associated objects are called a subsystem, a single product or family of
products whose definition is wholly self-contained. The subsystem model is an essential
element to understanding the OCA and is illustrated in Figure 2-5. The components of the
subsystem model, Objects, Controlic. s, Imports, Exports, and Signatures, are described in the
order given. Then a variant of the subsystem, the surrogate, is described. Finally, the role of
the executive is discussed.

23.2.1 Objects

An object maintains state information about the behavior of a real-world or virtual entity. The
kinds of real-world objects that can be modeled are things like engine parts, i.e., cams, pistons,
rings, and lifters. On the other hand, an object can model a thing that is not physically
realizable, such as a map that depicts the roads in an area. An object, when implemented,
performs two important functions:

1. it provides services through intemal subprograms, and
2. it maintains a readable state.

- The OCA is based upon the Object Connection Update (OCU) paradigm developed by the Ada Simulation
Validation Project (a funded SEI project from 1987 to 1980) sponsored by the U.S. Air Force Aviation Systems
Command (ASC/YT) and described in [Lee 88). Parts of this paradigm have been incomorated into the
Structural Modetling process and framework described in [Abowd 83] and [USAF 93].

14 CMU/SE)-94-TR-8

 Import Signatures
Controller /
Signa
i *Control Flow
Separati)
of 82?0:'23 ObjeCt * Data Flow
Specification — —
Implementation § Withinclude
5 I

Figure 2-5: The OCA Subsystem Model'2

The implementation of an object is abstracted through a manager. An object manager
maintains a consistent procedural interface to the underlying representation of an object via
recurring patterns for:

» the procedure names for its operations, and
* its usage of data passed as parameters.

Thus, no matter how the object changes the implementation of its operations or its internal
representation, the operation names and thsir data inputs and outputs available through the
manager should not change for a well-defined object.

23.2.2 Controllers

As an engine is an aggregate of its parts (the cams, pistons, rings and lifters), a controller
aggregates objects to form a cohesive subsystem. A controller is the locus of information
pertaining to the subsystem’s mission, i.e., the specific activity or task with which the group of
objects is charged (an engine provides rotational torque and power to the remaining drive train
subsystems). A mission is a bounded activity within a single domain of expertise. The mission
of a subsystem is captured in:

12 in the figure, the line spiiting the Controlier, Object, and Import components is used to depict the separation of !
concems between the specification of the callable interface and the implementation for each component. :

CMU/SEL-94-TR-8 15

———— B ey pEue
- * e m e g
RES IR :5.}?.‘ N g -é..ao.ﬁ»:{M Gl it

¢ what objects are needed to perform a cohesive set of related operations at a
level of abstraction above individual requirements (or low level features),

¢ where information inputs and outputs are located, and

¢ when low-level operations are invoked and in what order.
The controller is used to drive the subsystem, including the management of interactions
between the objects within the subsystem and the usage of data elements via use of a set of
explicit constructs for data transfer, the import and export structures. These two structures are
described in the following two sections.

23.2.3 impurts
The import structure:

¢ is the locus of other subsystem state data needed by a subsystem to achieve
its mission.
® collects state data from other subsystems’ export areas needed to achieve a
subsystem's mission.
¢ maintains separation of concerns between subsystems and their objects.
The import structure defines the interface for data input from the other subsystems. The
controller accesses input data needed for object operations via this structure, thus the control
flow from the controller to the import structure and the return data flow iffustrated in Figure 2-5.

2.3.2.4 Exports
The export structure:

¢ is the locus of a subsystem’s state data needed by other subsystems to
achieve their missions.

* provides storage area for a subsystem for data refiecting the state of the
subsystem’s mission.

¢ allows access to required state data without requiring access to the object.
The export structure defines the data output interface for use by the other subsystems. The

controlier places the required results of invoked operations into this structure, as indicated by
the control and data flows from the controller to the export structure shown in Figure 2-5.

2.3.25 Signatures

Signatures are a powerful mechanism for abstraction in the OCA; they are a formal
representation of the interface to components (objects, subsystems, and surrogates) that
provide services. '3 Signatures play a major role in how the high degree of separation of control
and data flow seen in the OCA is achievable in practice.

'3 [Srinivas 91) describes the concept of signatures as a means of describing the key notions of domain entities
as names and how the names form a vocabulary for describing a domain, Signatures were cited as the most
fundamental of the three ingredients in the specification of a domain, as they are used within the axioms
(formulas) and modeis in an aigebraic specification. Signatures are also described as a useful notion when
attempting to identify a component's reuse potential in [Zaremski 93).

18

For objects, Signatures consist of information about the details of the functionality, in particular
the processing options, provided by the object’s operations. Object signatures contain abstract
names for the services (and their underlying algorithms) provided by the objects, and hide the
mapping of the abstract service (and the selected name) to the implementation of the service.
In this way, implementations may change and altemative algorithms may be selected by
various users with minimal effort because users access the services through the logical names
provided by the signatures rather than directly.

For subsystems, the Signatures include:

¢ Object Signatures information that must be visible to other subsystems,
surrogates, and the executive,

¢ the names of all of the data items accessible individually and by aggregate
via the subsystem controller operations,

¢ names for the internal state of the subsystem, used by the executive, to
control overall system flow.

The signatures for surrogates are equivalent in content to those for subsystems.

Subsystem signatures allow the use of a subsystem’s operations without explicit reference to
(or knowledge of) the underlying objects comprising it, the specific features they provide, or
even the names that have been chosen to represent the services at the object level. A
signature for a subsystem may provide varying degrees of abstraction; the most trivial (and
least abstract) subsystem signature contains the union of the signatures of each object in the
subsystem. More sophisticated subsystem signatures provide higher-level services by
mapping simple names onto:

* services provided by objects,
¢ specific instantiation of services provided by objects, such as an invocation
of an object’s services with a specific set of parameters, or

* complex sequences of the object-provided services.
For example, an object might encapsulate a database that represents a terrain map of a
particular area. lts signature might include facilities for retuming the height above sea level at
a given location, each facility with different accuracy and computational characteristics. This
signature would remain stable even if the database were replaced with one of less resolution
that might require the object to extrapolate among the heights or nearby coordinate locations.

Additionally, this database object might be part of a subsystem that computes the as-travelled
distance between two points. The signature for the subsystem might represent a service that
retums the distance, given the starting point and destination. This signature may, unknown to
those outside the subsystem, map to a series of object operations, such as deriving a point-
to-point routing along roads between the given points or caiculating distances.

-

E B A AT
<) e
Eb Y

R

Signatures provide a conceptual link from the executive to lower levels of functionality that is
independent of the implementation of that functionality. Figure 2-6 illustrates this linkage. The
dependency links depict the incorporation or usage of a Signatures structure by another
structure and are shown by the solid arrows. The dashed arrows in the opposite direction
reflect the visibility of the Signatures names to the structure using them. With the transitive
inheritance of the Object Signatures (via the Subsystem Signatures) into the executive, the
executive now has sufficient visibility to invoke object operations in the desired manner, thus
the conceptual link between them. Only those parts of the Object Signatures needed by the
executive are required to be passed along by the Subsystem Signatures. These are the names
of those low-level processing options that must be visible to the executive (for any number of
reasons). The names provide a sufficient description to express the semantics of the option
without violating the coordination model, where rules explicitly prohibit invocation of object
operations from within the executive directly.

— Dependency Link
....... im- Name Visibilty

— Conceptual Link

Executive

A N

| signatures | Signatures
I . '
" | Subsystem
Controller

| signatures

Subsystem

||.
)
Controller | "

¢

\
\l
),

| Signatures |

Figure 2-6: Signatures as Conceptual Links to Object Functionality

Sections 5.3 and 5.5 describe specific examples of the uses of signatures for objects and
subsystems, respectively.
2.3.2.6 Surrogates
Animportant variation of the subsystem, the surrogate, is used to aggregate information about
physical or logical devices with which the application is to interface. These devices inciude:

* file systems or databases,

* other computers via hardware devices and software protocols, and

* human users via devices ranging from dumb terminals and keyboards
through bitmapped displays with pointing devices and sophisticated
graphical support packages.

18

The word surrogate is defined in [AHD 85] as: one that takes the place of another; substitute.
The most important goal of the surrogate structure is to provide a sulfficiently abstract notion
of the logical device as to allow for the substitution of different physical devices or
implementations (i.e., different operating systems and file structures). If a device is sufficiently
well abstracted, then exploiting its capabilities in applications is only a matter of:

« characterizing the physical attributes of the actual device to be used in a
specific application, and

e characterizing the data to be handied by the surrogate for the application.
The key differences between subsystems and surrogates lie in two major areas:

1. Surrogates are intended to be domain or product line independent, at least to
the level of the format of the data types provided within the application. This
domain/product independence also extends to the consistency of the names
for its operations, versus the domain specific operation names used within
subsystems. The notion of names for subsystem and surrogate operations is
discussed further in Sections 5.4 and 5.6.

2. A surrogate structure may be incomplete. For example, an input-only device
will not import any data and an output-only device will not export any data to
be used by other subsystems. It is expected that all subsystems will require
both an import and export structure to be fully specified.

The overall structure of surrogates is equivalent to that for subsystems. They contain
controllers, imports, exports, and a signatures structure at the controller level. The objects
underlying surrogates, the handlers and transforms, are structures that provide the necessary
interfaces to the device(s) and the functionality to implement data exchanges between the
application and the device(s). The internal structuring of surrogates into handlers and
transforms is discussed further in Section 5.8.

2.3.2.7 Executives

The executive provides the operating environment for the subsystems within the application
and, in most cases, is the arbitrator over conflicts between processes competing for time and
access to shared resources. The executive monitors and controls time for subsystems and
monitors interfaces to external entities such as hardware devices, other computers, and
humans, i.e., application users through the surrogates. The role of the executive in the overall
fiow of control in the OCA is clearly described in the next section.

2.3.3 Flow of Control and Data in the OCA

When the OCA is used consistently as the basis for implementing the operational aspects of
a domain’s features, the resulting subsystems and surrogates can be readily combined into
complete appiications with an executive. The executive provides the appropriate level of
control over the application via the subsystem controllers. Yet, because of the use of the
Signatures structure, the executive has no visibility to the data needed in the application, thus

achieving an important separation of concems in the resulting software. The flow of data and
control is illustrated in Figure 2-7.

CMU/SEI-94-TR-8 T

The solid arrows show the flow of control within the system. Except for the handling of error
conditions and the surrogates providing feedback, controi always flows downward.
Subsystems do not make calis to other subsystems or their objects. Calls to objects are made
only by the appropriate subsystem controlier. This standardizes the control fiow which
increases the understandability and maintainability of the software. The objects and
subsystems also have mechanisms for error handling and recovery which will be discussed in
detail in a subsequent report.

The dashed arrows indicate the flow of data between the subsystems. Data placed in a
subsystem’s export structure is available for use by other subsystems via their respective
import structures. Export structures have no knowledge of where their exported data are used.
It is the responsibility of the import structure, when implemented, to know where to get the data
necessary to provide all required inputs for the subsystem’s operations.

Executive

+ Control Flow

Figure 2-7: Overall Flow of Data and Control in the OCA

In summary, the OCA is an architecture that allows one to specify a generic design for
software systems using objects managed by controllers under the direct supervision of an
executive where:

¢ objects model the behavior of real-world (or virtual) components and
maintain state.

* controliers aggregate objects and manage connections between them based
upon a reaction strategy.

¢ executives manage the subsystem and surrogate controllers, time, and the
application state to provide acceptable response to stimuli.

A discussion of some of the benefits the OCA provides in application development and
maintenance is given in Section 3.4.

2.4 The Generic Design

The resulting output of performing the mapping process is the generic design. This design may
take many forms, depending upon the architecture used as a control. The important concept
is that the generic design is a domain dependent instance of the selected architecture. it
should always to possible to recognize a generic design as an instance of architecture X, if
that architecture has a well-understood partitioning strategy and coordination model as
described in Section 2.3.

For example, Figure 2-8 depicts the top-level structure for the convoy planner prototype
application developed by the authors during the initial execution of the mapping process. The
use of the OCA is readily apparent in the designation of subsystems and surrogates, and in
the uniform flow of control between them and the executive. Appendices G and H further
reflect the use of the OCA, as they capture instances of use of the specifications forms and
templates as represented in Appendices D and E, respectively.

Graphical
. Terminal Data
Storage
X/Motif DB/File Access
User Interface Mapper L Data Base]
User Selections i Database
Status
Executive
Asset Manager Convoy Builder March Table
—_—

Figure 2-8: Convoy Planner Generic Design

In describing the usage of models in software engineering and the role of the domain model
architecture and generic design, the context for understanding the mapping process is
complete. The next chapter provides an overview of the mapping process, including its

applicability and limitations.

SieMe n g

3 Overview of the Mapping Process

Previously, the mapping process has been described using a SADT view of a process with
input and output products as various kinds of modeis.'4 Now that the models pertinent to the
mapping process have been described, that view can be refined to focus on the use of those
models within processes that together describe the entire mapping process.

3.1 Partitioning the Process

The mapping process has steps that apply to both the Domain Engineering and Application
Engineering processes as described in [Withey 94]. Figure 3-1 shows an expanded view of
the mapping process with three subprocesses illustrated:

1. Domain Design, which takes a Domain Model as input and applies a Parti-
tioning Strategy from an Architecture as a control model to produce a Generic
Design.

2. Domain Implementation, which takes a Generic Design as input and applies
Code Templates and Design Rules from an Architecture as a control model
to produce the Supporting Components (for the Generic Design).

3. Application Development, which takes a set of Components and a System
Specification as input and applies Rules and Code Templates to produce the
Application Code.

Partitioning Architecture

otrategy / /
6om ai £ \

Templgtes/Rules

Supporting
Components

Implementation

Templates/Rules

Application
Code

System | Application
Specification |Development,

o

Figure 3-1: Decompoeition of the Mapping Process

14 See Figure 2-1 on page 7 and Figure 2-2 on page 9.

/ Domain
Engineers

I e v v e s

The Domain Design and Domain Implementation processes together form the mapping
process which is the primary focus of this paper. However, these processes do not present a
complete picture in that there is no process pertaining to the use of the resulting concrete
modeis (the design and components) in the development of application products. The
Application Development process is intended to complete the process of migrating domain
knowiedge into delivered products in a systematic manner.

Chapters 4 through 6 define a series of steps, segmented into three processes as summarized
above. The goal of the Domain Design process is to collect the information needed to develop
the package structures that implement the OCA. This information is collected onto a set of
forms (shown in Appendix D) that will be the major inputs for the Domain Implementation
process. in Domain Implementation, a set of code units (Ada package templates are shown in
Appendix E) which implement each subsystem, object, or surrogate defined during the
Domain Design process. Chapters 4 and 5 describes these two processes.

The Application Development process takes the user through some portions of the process of
using the completed or partial components to develop an application within the domain.
Chapter 6 describes this process.

Domain Model Specification Source Code
Information Eorm Construct
Features
Controllers
Descriptions Subsystems \
Top-Level =% \ ?gf:ures
Low-Level yp
Imports
Information Exports
E/R Data i
() S— Objects\ Managers
Operaﬁona'\> Signatures
Executive
Processes
Domain Design Domain Implementation

Figure 3-2: Migration of Domain Data to Specifications and Code

Figure 3-2 iilustrates the overall flow of the mapping process, showing the transitions from the
domain model to code via the use of the specification forms. Note how, during the Domain
Design process, the specification forms gather information from diverse sources via the
multiple modeis that collectively denote the domain and then how that information is

24 CMU/SEI-94-TR-8

VR e .

Ry

A

repartitioned into muitiple code units during the Domain Implementation process. This is
similar to how requirements documents are written for systems, gathering information from
diverse sources into a single document (or set of documents), and how those documents are
used. This similarity and others within this development process are the focus of the next
section.

3.2 Viewing the Process as a Normal S/W Development Process

The mapping process is analogous to the generic software development process of producing:
1) a specification, then 2), a design that meets the specification, and finally 3), code that fits
within the design. The analogy holds because:

1. the Domain Design process provides specifications for subsystems,
surrogates, and objects to fit within a generic design. This process links
together portions of domain models products into descriptions via forms
suitable for further refinement. The specification forms serve as the
requirements for the software entities to be developed.

2. the Domain Implementation process provides detailed designs for
subsystems and surrogates that satisfy the specifications from the previous
phase. These designs are instances of the OCA subsystem model, using the
components described in Section 2.3. Although the production of code via the
use of tempiates is the focus of this process, the code is not tied to any
specific application but is meant to be usable by all applications requiring the
capabilities of the subsystem or surrogate.

3. the Application Development process provides code for an application that
conforms to the OCA. This process binds together the subsystems and
surrogates, completing those portions of their code components left
incomplete from the Domain Implementation process, according to the
requirements of the application in terms of hardware (specific devices),
software (specific capabilities or features), and desired performance
characteristics. This process aiso involves construction of the executive,
which has its own template and guidelines for its completion.

This analogy is important because it links the mapping process to the conventional software
development process as practiced in most organizations. Hence, the mapping process is not
costly to implement in their overall process. This realization within an overall software
development should ease the organizations’s transition to use of this process. Transition
planning for this process is discussed extensively in [Withey 94].

The next section describes how the mapping process and its use of the OCA applies to the
problems of developing reusable software.

3.3 Use of the OCA in the Development of Reusable Software

The OCA is a model for organizing and implementing the structure of an application. its focus
is on the high level problems of control and data flow within systems, and not on the
implementation of low-level functionality. The data flow is controlled by the import and export
structures via the controllers; the main flow of control is handled by the executive.

The executive is designed to be a control structure for execution of an application using the
OCA's subsystem model. As such, it does not have any visibility to data items being used
within the application and, therefore, needs access to only the Signatures and Controllers for
the subsystems and surrogates that compose the application.

The executive is built around the consistent usage of layered case statements. These layers
provide a regularity of form within the code that results in an executive with a highly readable,
understandable, and maintainable structure. The fact that the subsystem is used as the
outermost layer of the executive’s internal structure provides the developer with an easy
mechanism to add or remove a subsystem; just add a new layer of template and complete it
for a new subsystem, or delete the entire case layer and references to its operations in other
layers to remove it. Appendix C.3 further describes the layers of the executive.

The OCA also provides applicable guidance in the structure of code for subsystems and
objects. However, the OCA does not enforce any style for components below these
abstractions. This does not mean that there is no appropriate guidance on how to implement
components at lower levels. Many object oriented design (OOD) methods exist that can be
used to create highly flexible and, hence, reusable components that would be applicable for
use within the OCA. Section 5.9 provides further insight into a five-layered scheme for
subsystems and their objects using abstract data type (ADT) packages and instances of them.

3.4 Benefits from Reusing OCA Structures

There are two major benefits to the use of the OCA in developing a generic design:
1. consistency of form within applications, and '
2. separation of control flow and data flow.

Each of these benefits is discussed in the following paragraphs.

3.4.1 Consistency of Form Within Applications

The use of templates tor code and the rigidity of the OCA in terms of code structure may be
foreign to many software developers who are used to developing in an individual or project-
specific style. However, once developers become familiar with the usage of the OCA, then
they will find that it provides a solution for most design problems. Think about how much time
designers have used answering the question “How do | want this system to look?" The nomal
answer is some ad-hoc decomposition whose justification only exists in the developer's mind
and will probably never be will understood by future maintainers. The OCA forces the
developer to ask a different question: “How do | design this system using the OCA?” The OCA

CMU/SEI-94-TR-8

-

provides a look for a system, and this look is consistent for all systems using the OCA as an
design basis. This means maintainers can make important assumptions about how a system
does what it does, and can focus on understanding what it does, vastly simplifying the
maintainer’'s workload.

3.4.2 Separation of Control Flow and Data Flow

The OCA is designed to separate the flow of control (what subprograms get called in what
order) from the flow of data (where are the required inputs and where do the results get put).
Controtl flow is implemented in:

¢ the Executive

¢ the Subsystem and Surrogate Controllers, with support from the Signatures
packages
¢ the Object Managers and the packages they use in their implementation
On the other hand, data flow is implemented in:

¢ the System Engineering Units and Subsystems Types packages which
declare the types

* the Export packages which declare the variables/objects of the types

* the Import packages which map data type usage to available Export
variables/objects

¢ finally as parameters to Object subprograms and their underlying
implementation
This clear separation of concems produces an application with control and data flow
responsibilities being relegated to distinct sections of the code structure, again aiding
developers and maintainers in understanding the system and where changes of various kinds
go within the code modules comprising it. Thus, the OCA provides a consistent system
architecture that makes the post deployment software support process a much more
manageable task and makes for longer lived systems with lower costs.

3.5 Limitations of the Mapping Process

At the highest level, the mapping process is highly dependent upon the abstract models that
are applied to create the resulting concrete models. The process would need some
modification to incomorate the use ot different domain analysis products. The OCA is only one
instance of an abstract architectural model that could be applied to produce a generic design.
The mapping process could be very ditferent depending upon the kind of architecture chosen
because the later steps depend heavily upon use of design rules and code templates
associated with a specific architectural model. The OCA has a well-defined component
structure, in terms of kinds of components and their interactions. This leads to a number of
code templates to support the components and cofresponding interaction rules. A more
loosely defined architecture may have few supporting templates and rules. More work needs
to be done to determine the applicability of this process when applied to different architectures.

R !mﬁ;-'?"’*’:ﬁ@i"—nm e .

The mapping process does not fully specify all of the decision making logic needed to
implement the process in an organization or for a particular project or application. Synthesis
steps, where disparate pieces of information are combined together, are generally complete
in that the steps state what information is being combined and the form of the result is well
understood. The analysis steps, however, are more heuristic in that they provide insight into
the intent of the step and a characterization of the desired output, but no precise rules can be
given for making specific decisions.

Use of the OCA limits the use of certain programming paradigms in the implementation of
subsystems and their objects. The internals of objects must be passive in that they cannot
invoke functionality except within their own scope. It is the role of the subsystem controller to
coordinate the interaction of its objects; the executive coordinates objects in different
subsystems through the controllers. In object-oriented programming (OOP) terms, methods or
operations cannot call other methods/operations. This is to reinforce the notions that objects
are only service providers and that they can take no active role in the application’s control flow
beyond their limited scope.

3.6 A Roadmap for the Details of the Mapping Process

To this point, the focus of this report has been on a general description of the mapping
process, a context for its applicability in Model-Based Software Engineering, and an
understanding of the kinds of models needed to describe and implement the process. With this
done, the reader has a sufficient understanding of the goals and intents of the mapping
process and the details of the process can be given. Chapter 3 begins the description of the
process at a detailed level.

The use of domain analysis products to develop designs and supporting software components
prior to their use in individual applications is commonly referred to as Domain Engineering.
This chapter covers the steps in the core of the mapping process, which is applicable to

- Domain Engineering. The processes and steps in this chapter are meant to be performed
apart from Application Engineering, which embodies individual product development.

Chapters 4 and 5 delineate the steps to support the Domain Design and Domain
implementation processes, respectively, as seen in Figure 3-1 and introduced in Section 3.1.
The FODA domain model provides the inputs and the OCA’s specification forms, code
templates, and design rules serve as the controis for the domain engineers who produce the
generic design and its supporting components.

Figure 3-3 on page 29 presents the OCA structures and the process steps discussed in
Chapters 4 through 6. After selecting the capabilities to be mapped (described in Section 4.1),
Figure 3-3 illustrates the use of specification forms that map the relevant information from the
domain model using steps in Sections 4.2 - 4.4. The forms then map onto the set of code
components seen in Figure 3-3 by performing the steps in Sections 5.1 - 5.9 and in Chapter
6. Each form or code component used (starting with the templates in Appendices D and E) is
marked with the step or steps relevant to its use.

8do]S 8882044 0} sjuewa|3 ubseq buiddew :¢-¢ eunbi4

(ve) I
_ sainjeubis uopesyddy

1 (©9)
€29 | | oipuen (ve) | welqo | (z¥) wuod |
uopedyioeds :
109[q0 |
1 (€'5) | sameutys | w
(s29%8'9) | (8'5)
(22979 99) ! (g'9) m
m 19)j0nu0) ; m Jejjonuod m
(1'z's)) S
saumpubls | (€29) m 8 vz ”
(€'2'9) | uoduy |: 'S) godAy wodw | |
! m " (L) m
|_.._.(vy)uuod uopeayjoeds sjeboung | i__{ey) Wiog uopsoyjoeds weisAsqns ;
sajeboung =0 swesAsqng
(e9)
9AIIN2aX3]

B P 3

i amleotn b on

4 The Domain Design Process

The Domain Design Process for subsystems and objects that fit within a domain-specific
generic design consists of 4 steps, shown with a summary of their actions and products in

Table 4-1.

These steps map various portions of FODA concrete models onto appropriate sections of
specifications forms for subsystems and objects (see Appendix D, Sections D.1 and D.2,
respectively, for examples of these forms). This mapping is summarized in Table 4-2.

The goal of the specification forms is to provide the software developer with access to the
information needed to implement functionality. They are designed with the assumption that a
domain model is in place. Therefore, except for information that can readily be transcribed in
a succinct way, they provide references to information within the various products of a FODA
domain model. The forms provide pointers to information elements about data, capabilities,
and behaviors from the information, Features, and Operational Models, respectively.

The steps listed in the sections below are given in the order in which they should be performed.
The only notable exception is that the creation of subsystem and surrogate specifications,
described in Sections 4.3 and 4.4, can be performed in either order or concurrently.

Step Action Product
1. Select Features from | Identify desired features from features | List of desired features
Domain model, i.e., operations, context, and
representation.
2. Create Object
Specifications
1. Identify Objects Identify data items maintaining state | Initialized Object Form,
or requiring explicit control. Entity List
2. Derive Object Analyze features model for operation | Completed Object Form
Operations and variations based on alternatives or
Inputs/Outputs context and shown in operational
model.
3. Create Subsystem Group together objects that work Completed Subsystem
Specifications together, correlated to set of related | Form
features in features model.
4. Create Surrogate Determine external interfaces for Initialized Surrogate
Specifications for applications and determine their Form
Devices control and data characteristics.

Table 4-1: Summary of the Domain Design Process

Subsystem Specification Object Specification
Domain Model Information Form/Secti Form/Section
m——:: —_—
Features
Descriptions Description Requirements
Requirements Exceptions
Exceptions
Top-Level Features N/A
Low-Level N/A Features
Information (E/R Data) Objects Name
Imports Description
Exports
Operational Imports Imports
Exports Exports
Exceptions

Table 4-2: Mapping Domain Model Constructs to Specification Forms

The description of each step in this specification processes is given at a level above the
clerical work of completing the specific forms. Each step will be described as tollows:

¢ its name will be given (in the title for the section),
® a summary of the action(s) taken in the step,
o the input(s) used in the performance of the step, and

* the product resulting from completion of the step and how it contributes to the
process.
Appendix A contains the details of the work to be completed at each step of the Domain Design
process concerning the use of the forms. Its sections are numbered to correspond to the
equivalent step in the following sections.

Step 0 — Establish an Overall Goal for the Mapping Process
Before beginning the mapping process, it is important to know what the major goal of the
process is, because various alternatives exist:

1. One can pursue a limited set of features that map readily to a core set of ca-
pabilities that are to be used in a product or as a domain demonstration (as
done in the movement control example). However, the exclusion of features
(those not selected) may impede the ultimate reusability of the software if and
when those features are later desired.

2. One can inciude ali features of major capabilities into the process, which can
lead to the most robust and reusable design possible. The development of
such a design and its components would be a very difficult task because of
the complexity of implementing and integrating the use of a potentially highly
diverse set of features and underlying objects.

These two extremes, building in only what you need (as in 1.), and building in everything you
could ever want (as in 2.), have different success criteria and cost versus benefit tradeoffs, as
briefly described above. In an organization transitioning towards MBSE, the model may be to
start more with a “build in what you need” goal as & start to build a reasonable set of core
components, transitioning to “build in everything” as your organization and product line
knowledge matures.

Each application of the mapping process probably involves some combination of these
alternative process goals at varying levels of engineering decision making.

4.1 Select Features from Domain Model

The selection of features involves the analysis of the feature and operational models to
determine:

1. what features are required or desired in the software to be implemented, and
2. what functionality and entities are necessary to deliver those features.

The teature model provides the primary input for deriving the requirements for the software to
be implemented because they capture the essence of user needs and desires for the software.
As described in Section 4.3.2 of [Cohen 92], there are three distinct groups or classes of
features for the movement control domain (and, one can assume, for most domains).These
three classes of features and their effect on the software specification(s) and framework are:

1. Operations. Those features that describe the functional characteristics of the
domain; the services that a system must provide.

The operational features are essential throughout the process of creating the
object and subsystem specifications. Many of the steps in the process make
direct references to information in the feature model.

2. Context. Those features that describe the overall mission or usage pattems
of a system; the description of the class(es) of users for a system.

The context features serve two major purposes in this process:

- They may drive the selection of various operational features, i.e.,
omission of altematives or options, based upon the specific context to be
implemented or, conversely, inclusion of multiple altematives and options
based upon a desire to support a wide range of potential contexts.

« They will manifest themselives in variations of control flow in controllers
and executives as derived from the control information contained in the
operational mode!.

J 3. Representation. Those features that describe how information is viewed by
the user or produced for another system; what sorts of input and output
capabilities are available.

The representation features will be a significant driver in the kind and
capabilities of the physical and logical devices needed to support the resulting
application, and thus the surrogates needed to interface with those devices.
Representation features can also drive the aggregation of data and their
structures as defined in the objects.

Jithout knowledge of the desired features, it is not possible to determine the kinds of data
needed in the software or the necessary structures or constraints to be placed on that data.

The resuit of this step is a record (in no specific form) of the selected features. This record (list,
highlighted features diagram, or other media) is used throughout the remainder of the Domain
Design process.

4.2 Create Object Specifications

Now that a number of features have been selected for inclusion in a generic design, the next

! step in developing the design is to understand how the features/capabilities are to be provided.
The service provider abstraction in the OCA is the object. Thus, analysis to locate, understand,
and specify the objects needed to implement features is the most appropriate step to perform
at this point.

4.2.1 Identify Objects Object Form
Those entities that are required for the selected features and functionality need
to be created. Look first for entities that are first and second entities above | Name
primitive entities. The primitive entities usually embody data items at an | Description
elemental level of representation, i.e., nhumeric values, string data, etc. The
: entities above these leaves generally provide useful software abstractions for
: the domain.

The place to look for objects to be supported is within the information model. In FODA, the
_ information model is created 1o support analysis and understanding of the domain problems
b and to derive and structure domain objects used in the application.'> The primitive entities are
the leaf items in the Information Model, while the object’s abstractions are found at various
. levels in the tree-based information hierarchy, as described in Section 2.2.

Higher-level objects may be constructed from combinations of lower-level objects. From the
movement control domain, the concept of a road map involves knowledge of:

1. locations - names of places, their positions in terms of some coordinate sys-
tem, and other identifying or useful data.

s

5. See [Kang 90, Section 5.2.3.

2. segments - connections between locations, their names, and other useful
information, in particular, their iength.

3. routes - a series of segments that defines a path between two or more
locations of interest.

4. the map itself - a complete collection of the locations and segments in a
selected geographical region.

it is not necessary to provide an object for each entity in the information model. There is an
important criterion to be used to determine whether or not an entity in an information model
should be mapped onto an object. In the map description given above, the locations,
segments, and routes are easily implemented as simple information aggregates, such as
records and arrays in the Ada language. Conversely, the map concept involves the use of a
complex structure due to the need to maintain the interrelationships between segments and
locations, i.e., the segments know about which locations they connect, but locations may be
connected to arbitrarily many locations via multiple segments. The generalized criterion can
be stated as foliows:

¢ if a data entity can be implemented as a simple data structure with no extra
functionality required to support the abstraction,

then leave it as an entity, noting its existence on an Entity List for
incorporation into a System Engineering Units or _ Types package (defined in
Sections 5.1 and 5.2, respectively), as appropriate.

Use a single Entity List for all of the objects to be specified via this process.

¢ |f the entity consists of a non-trivial relation between data items where explicit
functionality is required to maintain that relationship,

then the entity should be allocated to an explicit object. This object’s intemal
state will support the needed relationship via use of abstract data type (ADT)
packages in the implementation of the object.

Each simple entity has been captured on the Entity List, for later specification in a data type

package. Each entity selected to become an object will be specified using a Object
, Specification Form, shown in Appendix D.2. Further specification of the object, deriving its
needed operations, is performed in the next step, described in the following section.

422 Derive Object Operations and Input/Outputs Object Form
: The operations on the selected objects are derived from two sources:
: Requirements
1. the selected features and feature combinations in the Features
features model (from the record developed during Step 1), Imports/Exports
and Exceptions

2. by determining the transformations needed to support the
data flows specified in the operational model.

The different classes of FODA features may be handled as follows:

¢ All mandatory features that are immediate descendants of the selected
feature are entered on the form.

o Alternative features that are considered applicable or desirabie to be
incorporated are entered on the form. Choose at least one alterative
feature: otherwise, the parent feature cannot be correctly mapped into an
implementation. Be sure to note that the feature is an alternative.

¢ Optional features that are considered applicable or desirable to be
incorporated are entered on the form, noting that the features are optional so
that the developer can make the use of that feature available for easy
addition or deletion.
It is desirable to attempt to enumerate all of the relevant features on the Object Form. One can
separate between:

o features supported directly in the implemented object (building what you
need), or

« features supported via multiple instances of the object with various selections
of feature availability and underlying implementations (building in every-
thing), and

» those features not supported by the object or any version.

However, it will be very important to be able to trace the implemented object (and versions) to
a general specitication of the range of capabilities desired.

The Object Specification Forms for the allocated objects are complete at this time. They are
used to specify the Object Manager and Signatures components, which are completed within
various steps of the Domain Implementation process. Figure 3-2 on page 24 shows the
migration of domain information to these OCA components. Table 4-2 on page 32 refines this
migration by detailing the usage of the various sections of the Object Specification Form.

4.3 Create the Subsystem Specifications

As discussed in Section 2.3, a subsystem is an aggregation of objects. Subsystem Form
At this point, it is appropriate to synthesize a grouping of the objects that
will be working together to perform a given mission. These objects {Name
should correlate strongly to some set of features in the features model i
which are collected under a single mid to high level feature.Depending | Requirements
on the scope of the domain, a subsystem should correspond to some |Imports/Exports
feature in the feature model where the objects to be aggregated support | Exceptions
the needed subleatures for the subsystem encapsulating the selected

parent feature.

For each input or output needed or provided by a subsystem’s objects, determine the
o appropriate source (for imports) or destination (for exports) subsystem using the operational
Vs model. This siep may be deferred untii the application is further defined because the

applicable input source may not be defined until all subsystems and surrogates have been
delineated. However, it is imperative that all required inputs be noted so that system
completeness can be determined, that is that all inputs for subsystems have at least one
source from some other subsystem or surrogate.

The completed Subsystem Specification Form, shown in Appendix D.1, is produced by
performing this step. Figure 3-2 on page 24 shows the mapping of domain information to the
OCA subsystem components at an overall level. Table 4-2 on page 32 details the data
captured within the various sections of the Subsystem Specification Form.

4.4 Create a Surrogate Specification for Each Logical/Physical
Device

This step specifies an abstract view of a logical or physical device that [Surrogate Form
is to be part of an application within a domain. These devices include
text or graphics terminals with keyboards, pointing mechanisms, disk Description
drives, and communications mechanisms. The use of such devices Typenp

may be an integral part of the total application. For example, any /O Connections
program that interacts with a user and uses previously stored data imports/Exports
needs two surrogaies: Exceptions

Name

1. one for the user interaction device, i.e., the terminal/keyboard, and
2. another for some form of persistent data storage.

The isolation and abstraction of such devices is an important step in the creation of a
consistent framework for use by multiple applications in a domain.

There are two important kinds of information needed for the analysis to specify the abstraction
to be embodied within a surrogate:

1. the control characteristics of the device to be abstracted. These characteris-
tics will be identified using the following terms:

a. a monitor device - a device which, upon receiving an appropriate
stimulus from an external source, causes the application to receive
control signals and/or data to which the application should respond.
Such devices are nominally thought of as input devices.

b. a control device - a device which, upon receiving an appropriate
stimulus from the application, causes the device to send control
signals and/or data to an external destination. Such devices are
nominally thought of as output devices.

C. a device that exhibits both of the above behaviors; a device that
pertorms both input and output functions.

Also, consider whether the device behaves in a synchronous or
asynchronous manner.

2. the data characteristics of the device, in terms of both:

a. the physical characteristics of the initial input or final output, in terms
of size (of the device's buffer area, if any) and layout.
b. the logical characteristics of the final input or initial output, i.e., its
form.
The implementation details of how the control signals and data are transformed from formats
usable within the application to the format needed by the device being abstracted, and vice
versa, are what is hidden by the packaging under the surrogate specification.

The identification of surrogates can come from several different areas in the domain model
and the products that comprise it. The representation features in the feature model can identify
the needs for operations that must be provided by user interface devices with varying degrees
of capability, text, and/or graphics. The need for persistent data, shown in the operational
model, requires a surrogate to handle data storage and retrieval operations.

The completed Surrogate Specification Form, shown in Appendix D.3, is the result of this
step.The mapping of needed information from the domain model is very similar to that for
subsystems, as described in the previous step.

A

5 The Domain implementation Process

The steps in the previous section describe the Domain Design process, which derives the
specifications for the three logical abstractions within the OCA: objects, subsystems, and
surrogates. The following section will describe the Domain Implementation process of
mapping the information in those forms onto Ada templates for the component structures in

the OCA implementation.

Step Action Product
1. Identify/Create Identify low-level units of measure or | Reuse of applicable data
Engineering Units base data types from Information types across subsystem
Model and Context features and create | boundaries
or select packages to handle them.

2. Create Subsystem _Types | Identify data types needed for object | Encapsulation of
operations visible to subsystem subsystem data types
extemals and create definitions.

3. Create Object Signatures Create namespace for selecting object | Encapsulation of object
operations alternatives from the operational variations
Features To Be Supported items.

4. Create Manager Create object operation profiles using | Specification of Object

specification consistent naming and with needed abstraction
parameters (data/features).
5. Create Subsystem/Surrogate | Export Object feature information and { Specification of
Signatures create namespace to document data | Subsystem entities and

entities manipulated by the sub- operational variations
system’s objects.
6. Create Subsystem/Surrogate | Create subsystem operation profiles | Specification of
Controller specification using consistent naming and Subsystem abstraction
Signature parameters.
7. Create Subsystem/Surrogate | Create support for acquiring needed | Encapsulation of data
Import/Export packages inputs for operations and making out- | interface functionality
puts visible to others.
8. Create Subsystem/Surrogate | Create sequences of object operations | Implementation of
Controller package body to achieve subsystem requirements, | Subsystem internals
' importing and exporting data as
needed following operational model.
9. Create Manager Implement object operations using Implementation of
implementation low-level components/ADTs, etc. Object internals
following operational model.

Table 5-1: Summary of the Design implementation Process

The Domain Implementation process of mapping specifications for the subsystems and
objects onto the OCA and its Ada code constructs consist of nine steps, shown with a
summary of their actions and products in Table 5-1. The steps in the process are given in an
order that allows the developer to complete a code unit, usually by filling out a template, and
then compile the resulting source code it into a program library. Subsequent code units
developed in this process can make use of these previous resuits.

The Ada language incorporates the notion of a package construct as a group of logically
related type, object, and subprogram declarations. Other languages, such as C++ or Modula-
2 have an equivalent notion and corresponding construct, such as the class or module. In
addition, these languages also provide the equivalent of the separation of concem between
specification of operations and their implementation seen in the Ada package specification
and body, as iflustrated in the steps shown in Table 5-1. Modula-2'6 defines the separation in
terms of distinct definition and implementation modules. C++7 clearly defines (in a less formal
manner) the class interface (or header, placed in a . h file) and implementation (placedina .c
file). Whenever these steps refer to the terms package specification or package body. one can
refer to use of the equivalent structures in other programming languages.

The first six steps of the Domain Implementation process involve the bottom-up construction
of code unit specifications up to the level of the subsystem controller. The last three steps are
a top-down refinement process of developing supporting package specifications and bodies,
i.e., the import and export areas, and the bodies of the package for the subsystem controller
and the object manager (implementation details discussed in the appropriate section and/or
corresponding appendix section).

Steps 3, 4, and 9 are performed for each Object Specification Form derived from the previous
process. Steps 2, 5, 6 and 8 are performed for each Subsystem or Surrogate Form. Much of
the actual work of surrogate development is deferred until the application structure is
completely defined and will be described further in Chapter 6.

These nine steps map information on specifications forms for subsystems and objects onto
various constructs within the resulting code structures. This mapping is summarized in Table

5-2 on the following page.

The description of each step in this process is given at a level above the clerical work of
completing the specific template(s). Appendix A.2 contains the details of the work to be
completed at each step concemning the use of the Ada templates. lts sections are numbered
to correspond to the equivalent step in the following sections. As in Chapter 4, each step will
be described in terms of its name, actions, inputs, and product. Each step results in a
completed OCA component as a product, except for Import bodies and surrogate components
which are completed during the Application Development process described in Chapter 6.

16. See [Wirth 85] for further details on the Modula-2 language.
. See [Stroustrup 91] for further details on the C-++ language.

40

o N
. ‘,‘%.,::@s'

we I U gl ar e b G
Pt e s i Al e

Specification Forn/Section Source Code Construct
Subsystem
Requirements Controller
Features Controller
Signatures
Objects Signatures
Types
Imports Imports
Exports Exports
Exceptions Signatures
Object
Requirements Manager (procedures)
Features Signatures
Imports Manager (procedure parameters)
Exports Manager (procedure parameters)
Exceptions Manager (exceptions declared within the
Manager and propagated by procedures)

Table 5-2: Mapping from Specification Forms to Code Constructs

5.1 Identify or Create Applicable System Engineering Units
Package(s)

The goal of developing a System Engineering Units (SEU) package is to gather together the
information about the basic elements of data that are commonly used as parts of many other
abstractions in software systems. The inputs are the Entity List, which specifies the need for
various data items, and the Information Model, which specifies the characteristics for the data.

Many of the low-level parts of data items within typical software systems are probably
derivable from a relatively small number of data types whose usage spans many domains.
Various units of measure, such as feet or meters depending on which measurement system
the software is to support, and the operations needed to support their use, are prime
examples.

There is no standard name for this package because it may not be prudent to put all of the
shared or common types into a single package. In the movement control example, type
declarations of this nature were built into three packages:

1. Measurement_Types - a package of basic units of measure such as length,
weight, and speed, which are available in both metric and English units and

CMU/SEI-94-TR-8

i

scales, and which provides a flexible mechanism for using and changing be-
tween the units.

2. Vehicle_Types - a package which encapsulates the highly variant structure of
the hierarchy of information that can be stored as part of the many different
views a vehicle may have within the Army command structure.

3. Default - a package which provides useful constants for various instances of
Vehicle_Types.

The identification of data types that should become part of this package or set of packages
(depending on the number and layering of data types needed) can be identified by examining
the Entity List, developed during the identify Objects step in Section 4.2.1, for those data items
that are used by multiple subsystems. Developers should attempt to reuse packages that
provide the required data types wherever possible. Some good examples are the
Basic_Data_Types and the many mathematical packages available from the CAMP project
(see [McNicholl 88]). Otherwise, the developecrs must implement them directly. [Gautier 90]
contains a suitable set of guidelines for development of Ada packages with specific rules for
generics and a strong focus on reusability.

The result of this step is the selection of reusable data type packages to be used throughout
the OCA components These packages specify many of the data types to be transferred
between the import and export packages for subsystems and surrogates and the parameters
used by object operations.

5.2 Create Subsystem _Types Package
The process and inputs for creating this package are similar to that 9 I O
just described for creating the System Engineering Units or

Common_Types package(s). The key result is to provide a suitable | |~ _ __ _
type definition for those entities that will be used with a single

subsystem.

Allocate all of the remaining data items in the Entity List to the appropriate subsystem'’s
“_Types® package and create a suitable type declaration for each item, referring to the
Information Model for the needed data characteristics.

Notice that all of the data structures that will be passed between subsystems and surrogates
have been defined in these two steps. Those data items that are used by muiltiple subsystemns
are defined first in various SEU packages. Then, those items that are used only in one
subsystem are defined in specific _ Types packages. Surrogates are an exception in that they
need access to the data types of all subsystems to which they are to provide their services.
Thus, the import and export packages and the controller package body for a surrogate will
incorporate type information from each subsystem _Types package as needed to implement
the needed operations for the surrogate.

i‘ : :

5.3 Create Object Signatures Package E——
The Signatures package at the object level of the OCA captures the use

of features that imply a stiection from alternative algorithms or other Object
information used to control the execution of an operation, e.g. control | -
information. As an example, consider the operation of selecting a route

between two points (following the logical map structure described in
Section 4.2.1).

The movement control domain mode! in [Cohen 92] describes two alternative subfeatures for
the route selection feature, best and satisfice.'® Computer science has two terms that are
synonymous with these notions, optimal and heuristic. A best (or optimal) solution shouid
guarantee the most accurate resuits possible, at the cost of high (or perhaps prohibitive)
computational time. Conversely, a satisfice (or heuristic) solution may provide a resuit that is
less than optimal yet is satisfactory for the intended purpose, and has the property of being
solvable u. an appropriate time period. The selection of the best or satisfice feature has
nothing to do with the data (in this case the points selected as start and end points and any
others to be visited along the way). The feature selection has to do only with the algorithm used
to produce the desired results, i.e., control of the application. This is the intent of the use of
features in FODA, the selection of appropriate functionality according to the user’s desires.

The Obiject Signatures package captures the flexibility of an Object Manger’s functionality. The
Signatures package creates the namespace for identifying the existence of features, keeping
separate from the code that creates and implements the operations that satisfy those features.

Building the Object Signatures packages is a straightforward process. For each named feature
from the Object Specification Form, create a corresponding name within the Object Signatures
package. if an object has no features, i.e., alternative implementation calls or optional
processing, then no Signatures package is required.

Creation of Object operations begins with the next step, as described below.

5.4 Create Cbject Manager Package Specification

The intent of the Object Manager is to provide a standard mechanism for
invoking the operations needed to provide the services for the
physicallogical object that is to become a part of a system. Use of a
standard mechanism provides two major benefits:

1. It allows the use of a predefined set of operations/names that give objects a
consistent set of operational semantics. This enables objects that implement

1. The word satisfice is defined as to decide on and pursue a course of action that will satisfy the minimum
requirements necessary to achieve a particular goal [OED 87]. This word and its definition are attributable to
Nobel laureate Dr. Herb Simon, who has used i in many comexts, including finding various classes of sokutions
to combinatorial problems ([Simon 81}, Chapter 5, p. 138.)

even highly diffsrent abstractions to be common building blocks for multiple
applications due to the external similarities.

The development of this consistent namespace for object (and eventually
subsystem) operations involves an analysis that is beyond the scope of this
report (see Limitations in Section 3.5).

2. ltresults in a great increase in the understandability and maintainability of the
subsystem operations that utilize the object’s (via the manager) operations in
their implementations.

The need for parameters for the operations is defined by the lists of Imports and Exportsin the
Specification Form for the object. Using the Operational Mode! to provide the precise needs
for inputs and outputs for each operation, fill in the parameter profiles for each operation
specified in the code template. If an object handles muiltiple entities, then each predefined
subprogram will be overioaded to handle each of the entities to be stored and/or manipulated
by the Object via Manager calls. Also, for each type of object feature, add a parameter of mode
in’, using a default parameter value if a particular feature is nominally used at invocation.

Using the information on the Object Specification Form, verify that each mandatory feature is
allocated to one (or more) subprograms and that specified optional or alternative features are
similarly supported via use of feature parameters in the appropriate subprograms. Finally,
ensure that there exists a version of the applicable subprograms for each entity allocated to
the Object Manager.

5.5 Create Subsystem/Surrogate Signatures Package

As discussed previously in Section 5.3, the Signatures package is a

mechanism for creating a namespace to be used by the executive :
to achieve precise control of the subsystem. The executive 9 O
achieves this control via the passing of control-related information
from the executive to subsystems and their underlying objects Controller
during procedure invocation. The process to be followed for
creating a Signatures package is similar to that described earlier for

Objects. The features named on the Subsystem Form are mapped
onto operation names or to features names to be passed down to
invoke altemnative or optional sets of Object operations.

For the Subsystem Signatures, there is the additional responsibility of incorporating any
Object Signatures packages and their information into the Subsystem package and
reexporﬁng19 them for use in the executive. Reexporting makes the various type names and
enumeration literals from the associated Object Signatures packages directly visible at the
subsystem level. The effect of reexporting the types and literals from the Object Signature
packages is to minimize the need for other subsysteins and surrogates or the executive to

1% See [Bardin 87a] and [Bardin 87b] for an explanation of the concept of reexporting and for an extended
exampie of its application, respectively.

44 CMU/SEI-94-TR-8

require visibility to the Object Signatures, i.e., using the with (as in Ada) or inciude (as in C++)
syntax to reference the signature information. Reexporting simplifies the usage of the
subsystem by centralizing all of the Signatures information into a single entity, the Subsystem
Signatures package.

A User interface (Ul) Surrogate Signatures package provides a good example of the use of
signatures in the OCA. The Ul is a focal point for control information in that the user’s input in
terms of menu selections, button clicks, etc., must be transferred in a form usable by the ap-
plication's executive. Similarly, errors that the user must be informed of need to be trans-
formed into device-usable formats. Thus, the Ul Surrogate Signatures is a complex structure
that, in many cases, requires a great deal of knowledge about the application as a whole. lts
Status_Value is a variant record structure that contains the equivalent of the selected menu
option, keystroke, etc., that are to be processed by the application as a user command. All
subsystems whose operations are invoked by the user via the Ul surrogate must become part
cf the surrogate’s namespace. Also, the information needed to construct appropriate error
messages must be in the Signatures package.

A surrogate depends upon information from subsystems it is to support; therefore, it will not
be possible to completely define a surrogate until all of the subsystems that will become part
of an application are selected and defined, e.g., a complete surrogate is bound to a specific
instance (at the subsystem composition level) of an application architecture. Consequently,
the addition or removal of a subsystem to an application will (in all probability) affect one or
more of the application surrogates. This does not mean that a surrogate is application-specific;
just that there is some degree of coupling between subsystems and the surrogates. This
coupling is well defined and is described in Section 6.2 where the surrogates are completed.

5.6 Create Subsystem/Surrogate Controller Package Specification

The Subsystem Controller provides a uniform interface to the

underlying capabilities of the subsystem. Again, the use of a —
predefined namespace for the subsystem provides for consistent I-_-r| O
names across subsystems, just as for objects as discussed in

Section 5.4. The procedures deciared in the Controllers use the |
entities declared in the Signatures package as parameters. The e —

parameters will be used in the Controller body to determine which
Object operation(s) need to be invoked to fulfill the required
functionality.

For surrogates, the process is essentially equivalent to that for subsystems. Again, some
amount of work must be deferred until the application is defined, since each of the two device
control procedures, Application_To_Device (for control surrogates) and
Device_To_Apglication (for monitor surrogates), is overioaded for each functional subsystem
that is part of the application architecture. Also, because for some subsystem operations we
need to distinguish between differing kinds of information relating to the same entity, we may

CMU/SEL-94-TR-8 45

need t0 use an altemnative form of the Device_To_Application procedure. This second
overioaded form allows an incomplete yet useful amount of entity-related information to be
transferred into the application versus a complete data item. This alternative is useful in
passing search key information into the application for use by a subsystem in searching for
and locating a desired piece of information in a large information aggregate so that a complete
record can be retumed, hence the use of the term Key in the Data_Kind declaration seen in
the template in Appendix E.3.

5.7 Create Subsystem/Surrogate Import and Export Packages

As discussed in Sections 2.3.2.3 and 2.3.2.4, the Import and Export :
packages provide the mechanism for bringing data into and getting
it out of the subsystem or surrogate; there is no difference in their @
implementation, other than when in this process they can be
completed. The subsystems can essentially be completed at this Controlier

point, whereas the completion of the surrogates must be deferred T

until the application context is further defined.

The Export package is completed first. The need for a data item to be exported is defined by
the Export and Destination information in the Subsystem or Surrogate form The Export
package creates a visibie reference to data values of use to other parts of the application. The
content of the declared data items is determined via calls to subsystem/surrogate operations.
There are two basic methods for exporting data within the OCA:

1. One can simply supply declared variables which are directly visible within the
package.

2. One can supply functions that return an applicable value. The functions hide
any visibility to the variables themselves and can be used to implement
indirect and/or mutually exclusive access to the data.

The Import package is compieted in two parts. The specification or declaration part creates
the function name (one for each data type listed in the imports section of the Subsystem
Form). The function will be invoked by the Controlier to gain access to the data value specified
by the retum type (one for each data type required by one or more subsystem operations. The
body supplies a reference to a data value of the required type), either directly by naming a
variable created in another subsystem’s Export package, or indirectly by calling the function
supplied by the Export package. In either case, the knowledge of where a data item comes
from is hidden at a level where it is easily modified and has minimal effect to the remainder of
the application code. The body part is completed in Section 6.2.4 for subsystems. For
surrogates, completion of the import and export packages is deferred until Section 6.2.3.

® CMU/SEI94-TR-8

[ERET SN

5.8 Create Subsystem/Surrogate Controller Package Body

The Subsystem Controller body is where the binding occurs —
between the objects that provide the services and the needed

imports and exports needed to make the services perform work. ':f' . | O

Thus, the recurring theme in implementing a Controller body will be
centered about the following sequence: | Controller

1. Take in the entity (and feature(s)) parameters eventually to !-l
be passed in by the call from the Executive, defined in the
operational and feature models, respectively.

2. Based upon the given parameters, select the appropriate Object operation to
call.

3. Call the selected operation, using appropriate Import functions to satisfy the
input parameters and Export variables to receive output results.

4. If no exception is raised, ensure the state of the subsystem is indicated as
Normal, or handle any propagated exception by either issuing other Object
calls to clean up the Object state or setting the intemal_State to a meaningful
Status_Type for examination and action by the Executive when the Signal
function is called.

The steps for completing a Surrogate Controller body are less clear due to the differing nature
of what a surrogate is to accomplish in terms of the muiltiple of different capabilities »resented
by various devices. Thus, these steps are much less precise than those given in other sections

of this report, but they will still provide some guidance to the implementer of the surrogate.

1. Plan to develop a surrogate in either one of two ways:

a. One style is to encapsulate the device characteristics into a single
Handler package using the information on device characteristics and
buffer size given on the Surrogate Specification Form and develop a
Transforms package for each subsystem and its data entities to be
handled by the device. This approach is recommended for devices
that have a single set of fairly immutable characteristics where those
characteristics are best located in a central location. This approach
was used in the User Interface Surrogate (see Section F.1.1 for a
discussion of data interfaces used in the user interface).

b. An altemate approach, suitable for disk systems whose file formats
are highly fiexible, is to develop a Handler and Transforms
combination package for each subsystem. This approach
acknowiedges the fact that there is a single logical device (with
potentially asynchronous behavior) that should be encapsulated in a
controller, but the flexibility of the device precludes the need for a
single Handler package, i.e., each file type or set of related files to be
used is implemented as a separate package.

47

—— e —— e —

SR v

2. The namespace for device Handler and Transforms package is less rigid than

the namespace used for subsystem controliers and object manager

operations. It is important to develop a consistent namespace for use within

a single surrogate, but the names need not be consistent across different

surrogates. For exampile, the notion of Read, Write, Open and Close

operations are highly useful when thinking about file systems, whereas Get

and Put or Send and Receive operations are rore applicable to other kinds

of devices.
Also, since the surrogate will need knowledge of the specific application to be complete, the
remaining portion of the surrogate development must be deferred until a specific application
(in terms of subsystems/features) is to be developed.

5.9 Create Object Manager Package Body

The Object Manager body is where the binding occurs between the
specific algorithms and/or abstract data types (ADTs) to be used to
implement operations and the data types and constructs of the OCA.
Therefore, the bulk of the completion of its intermnals is left to the
implementer using any design approach or method that produces |
components that will integrate into the OCA subject to the limitations
described in Section 3.5.

From this point on, the package implementer has to ‘with’ in any additional packages
containing the algorithms and ADT operations desired to complete the construction of the
operation subprograms in accordance with the requirements/features allocated to the object.
This includes appropriate performance or system features such as constrained memory
usage.

A subsystem controller is designed to be the top level of a hierarchy of code units supporting
the application executive. Each level in the hierarchy provides specific resources or
encapsulating lower level resources. Figure 5-1 illustrates the implementation of this hierarchy
with an example, again drawn from the movement control domain.

The Subsystem Implementation Model depicts the contents of the Object Manager and the
relationships between the components that form its contents and to the subsystem controlling
the object. The bottom two layers of the hierarchy, Basic Operations and Data Types, provide
ADT services (usually in the form of Ada generics) and type-specific declarations and services,
respectively, to the next two layers, Utilities and Objects. The Utilities layers provide an area
where generic objects can be formulated and those generics instantiated as needed prior to
use within an Object Manager at the Objects level. The Object layer is where the use of Utilities
and Data Types are combined into meaningful abstractions for use by the Subsystem.

Subsystem Convoy Builder
4
Objects l\%:::gzr
OOD [Tostantiated
Convoy Manage

Utilities f

Convoy Consteaints Add_Length

1

Data Types C“m:l?;'plgmg“ Meas,ryu;cgent Vehicle_'lypoﬂ
Operations | Se Fackeee] oo v

Figure 5-1: Subsystem implementation Model

The structure of objects is less regular than that of subsystems or surrogates as defined by
the OCA. The Subsystem implementation Model shown here describes the kind of
relationships and dependencies that can exist at the Object level. The Utilities, Data Types,
and Basic Operations layers are an attempt to capture these relationship in an object-oriented
m: "er. Again, the purpose of an object is to model an important entity in an application. it is
not possible to rigorously define the implementation of an object because of the wide variance
in what objects are needed in domains and how they are characterized in software. The
Subsystem Implementation Model of the OCA provides guidance on the kinds of software
components that can be used to implement domain objects in software.

N g——

6 Application Development Using a Generic Design

The previous two chapters described processes for taking information from the domain model
and transforming it into design and code units (at varying degrees of completeness) that are
to become the building blocks for the development of actual applications in the domain. The
following sections describe the Application Development process, which completes any
unfinished blocks and assembles them into a cohesive application. This process consists of
three major steps, shown, along with a summary of their actions and products, in Table 6-1.

Step Action Product
1. Create Application Determine needed subsystems and | Context for Application
Signatures surrogates. Document operation
namespace. Determine executive
statespace.
2. Complete
1. Surrogate Signatures Determine data items to be handled. | Namespace to describe
Determine control feedback needs | device capabilities
to executive Determine error
handling information needs.
2. Surrogate Controller Create surrogate operation profiles | Specification of
specification using given names and data item Surrogate abstraction
namespace.
3. Surrogate Import/Export | Use operational model to determine | Encapsulation of data
required external inputs/outputs. interface functionality
4. Subsystem Import body | Complete mapping of sources for | Isolation of data source
required inputs. lo. ition
5. Surrogate Controller body | Create sequence of transforms for | Implementation of
handler operations. Surrogate internals
3. Complete Executive Determine overall flow of control | Top-Level Control of
Template via operational model. Application

Table 6-1: Summary of the Application Development Process

As described in the introductory material to Chapter 5, whenever these steps refer to the terms
package specification or package body, one can refer to use of the equivalent structures in
other programming languages.

6.1 Create an Application Signatures Package

The Application Signatures package is the top-level namespace for the application to be built.
This namespace is most essential to the executive, but as discussed earlier, is needed by

e i

various package bodies to compiete their inlementation. This package is where the various
subsystems and surrogates are identified together as an Application Aggregate. Also, other
important declarations useful to the executive and various surrogates, in particular the Ul
surrogate (if needed), are made here.

Three different kinds of declarations are made in this package:
1. naming of the subsystems and surrogates that constitute the application,
2. naming the subsystem/object callable operations,
3. naming the statespace for the application,

6.2 Complete Packages Making Use of Application Signatures

Now that the application is defined, via the namespace and the underlying references to the
needed subsystems, the parts of subsystems and surrogates that were deferred from the
processes and steps listed in Chapter 3 can now be completed. The completion of these
packages is done in the paragraphs below, performed in the given order.

6.2.1 Complete Surrogate Signatures Package
Now that the subsystems to be used are selected, the surrogaies that

provide the interfaces for data to be processed by the subsystems can
be completely defined. |

The entity namespace is the list of identifiers for those data types
handied by the surrogate. Simply create an appropriate enumeration
literal for each data type to be used.

For most surrogates, the Status_Value enumeration type was previously defined by the error

information retumed by the device. For the Ul surrogate, the Status_Value is the list of valid

operations whose implementation requires the services of one or more subsystems. For each
‘ subsystem with features, create a variant record whose discriminant is based upon the
' subsystem’s Entity_Type, and then, for entities whose use is associated with a feature, create
4 a variant part with a fieid to hold the identifier for the selected feature type. The Status_Type
; is then completed using the format given in the Surrogate Signatures Code template. Also, for
‘ Ul surrogates, the Error_Return_Type template is completed, filling in a variant part arm for
' each subsystem to include its Error_Type information.

6.22 Complete Surrogate Controlier Package Specification
Completion of the Surrogate Controlier code template (specification),
started in Section 5.6, can now begin. Depending on whether or not a 9

single Entity_Type was created in the sumogate’s Signatures I::I

package or the use of the subsystem Signatures packages is | Controller |
required, the number of required subprograms can vary significantly. [r— _:

52 CMU/SEF94-TR-8 !

The two subprograms, Device_To_Application (for allowing the device to make inputs visible
to the application by placing value into the Export region) and Application_To_Device (for
sending control information and data) are overioaded once for each Entity_Type from the
surrogate or subsystem Signatures, as appropriate. Again, depending upon whether or not
keys are required (as described in Section 5.6), use of the Device_To_Application subprogram
template with the additional Kind parameter may be desired.

6.2.3 Complete Surrogate import/Export Packages
This process is equivalent to that given in Section 5.7 for completing
the subsystem Import/Export packages.

6.24 Complete Subsystem import Package Body

With the completion of the Application Signatures package, the
import package body can be completed for those function bodies
that required the use of the Source parameter, as described in
Section 5.7. Additionally, data values coupled to external inputs via
the surrogate Export packages can also be defined.

6.2.5 Compete Surrogate Controller Package Body
Compileting the Surrogate Controller body is simply a matter of
following through with the style of Controller selected in Section 5.8.
The use of outside generic packages for creating the Transform
package(s) to be the service providers for the surrogate controller is
on an as-needed user-defined basis.

6.3 Complete the Executive Template

Finally, the construction of the application executive can begin. A code template should be
used to assist in the implementation of the executive, such as seen in Appendix E.15. Within
the executive, there are at least three major runtime phases, illustrated by the
Application_State type in the Application_Signatures package. The initialization phase brings
the application up to a point where it can receive inputs and produce results under the
specified circumstances. Any operations needed to initialize the application must be called
before the Program_State is set to Steady.

Within the main program loop, the Ul Signal function acts as the driver for the application, i.e.,
the user selects operations to be performed and the application responds to those selections.
The selections are retumed in the form of the Status_Type record from the Ul surrogate which
has embedded in it:

Y

P
oo

DR
TN

-~ o S A
PR, ﬁ,,p&gifas; R

N
TR LR

 the identity of the subsystem of primary concem,
* the operation (translated into one of the standard operation names), and
¢ any entity and/or feature information needed to control the subsystems and
underlying objects to be invoked by the executive as a result of the selection.
The selection may invoke a sequence of operations involving multiple subsystems or
surrogates.

The executive main loop is organized internally as a set of nested Ada case statements. By
using the pieces of the selection record in a consistent way, the executive can, in tum, be
organized in a consistent way using the following scheme:

1. The first level of decomposition is at the subsystem level. Even though muilti-
ple subsystems play a role in most user operations, each user operation is rel-
egated to a subsystem or surrogate which has primary responsibility, usually
because it is the main service provider or the destination of the ultimate resuit.

2. The second level is the operation name, e.g. Construct, Destruct, and Fetch.

3. The third level is the entity name/identifier. This designates the type of data
to be received, manipulated, and or retumed.

4. The lowest level is the feature identifier. As described in Section 5.3, this
value, it provided, designates a certain class of processing to be used in
obtaining the desired result.

Thus, completing the main body of the executive control loop is a process of filling out the case
statement template for each subsystem, operation, entity, and feature selection, as
appropriate, and using the Operational model and other information to determine the
appropriate sequence of subsystem operations for each user selection.

Finally, as in initialization, the executive can call a series of finalization operations on
subsystems to ensure adequate storage of important results. The finalization section is
reached only after some operation has changed the Program_State of the executive to the
Finalize value. After completion of the finalization operation, the program terminates normally.

L

1

L
54 CMU/SEH4-TR-8 b

e mme e ez - [R i PR

R R e o MCRA R PN W
- fnd E e

sty

WLy

7 Conclusions and Future Directions

7.1 Conclusions

The mapping process described in this report provides a mechanism for using the information
in the various models derived from exercising the FODA method on a domain. The process
provides for development of the specification and implementation for software to be reused in
a family of programs within that domain. The process is practical and provides precise
guidance where applicable, yet is flexible enough to be used across a wide variety of
application domains.

FODA Modeling
Concepts

Architecture

Domain
Model

Generic Design

Mapping

Analysts Process

Domain o
i Application
Engineers plicat
System Application
Specification Development;

A

Figure 7-1: A Development Life Cycle Utilizing the Mapping Process

Figure 7-1 formalizes the roadmap depicted in Figure 1-1 at the beginning of this report and
iliustrates the use of the mapping process as an integral part of a development lifecycle where
domain analysis provides the models needed to characterize the requirements for a related
set of applications and the mapping process exploits the models to develop a generic design
which is then reused for each product in the program family.

The authors completed, with the assistance of a graduate student who wrote the GUI, a
demonstration prototype consisting of 22,000 lines of Ada code and 2,500 lines of “C”. This
prototype demonstrates the viability of the mapping process. Only a general notion of the
desired capabilities were selected as features from the features model. The remaining data
and detailed functional requirements were gathered following this process. The resulting

CMU/SEI-94-TR-8

software contains four subsystems, four objects, two surrogates, two handlers, four
transforms, and an executive. Of the 22,000 lines of Ada, approximately 6,500 lines were
reuses of various Booch components, described in [Booch 87]. The example movement
control software described throughout this report has been compiled and executed on multiple
hardware/OS/compiler combinations.

7.2 Future Directions

7.2.1 Near-Term

1. Further validate the model(s) and templates by documenting their usage by
outside users on their domain analysis or reusable software efforts. in partic-
ular, work with an organization in a domain with real-time and other perfor-
mance related requirements to test the process’s ability to incorporate and
suitably handle such requirements.

2. For the example system, further prove the flexibility of the OCA by:

a. replacing the rudimentary map abstraction with calls to a more
comprehensive Geographical Information System (GIS),

b. reimplementing the “C"-based GUI in Ada, using appropriate Ada
bindings to X and Motif and removing the type conversion routines
and substituting a more flexible buffer interface for the data items to
be exchanged between the GU! and the rest of the application, and

c. reimplementing the I/O packages under the Data_Base surrogate to
incorporate the use of a commercially available relational database
using SQL syntax.

3. Extend the executive model from its present form with a single thread of
control to incorporate the ability to handle multiple threads of control, thus
providing the ability to handle multiple asynchronous devices.

722 Long-Term

1. Investigate mechanisms that will make possib'+ the development of more
highly reusable objects, including further studies involving the use of generics
and the forthcoming changes/ffeatures of the new Ada standard, Ada9X.

2. Investigate the potential for automation of the process of template generation
and completion through use of appropriate software tools. If this is successful,
continue to explore the automation process towards the goals of complete
generation of applications via selection of features and information entities
desired.

3. Further investigate the processes described in this document through case
studies. From analysis of such studies, refine the processes to strengthen
their utility and understand their application in other domains.

4. Implement the OCA executive as a set of subsystems and surrogates that
provide access to the following services:

a. Event management, including time.
b. Schedule management.

c. Import/Export management, to allow for the dynamic binding of
connections between the Import and Export packages.

d. Control sequencing (subsystem activation), based upon schedule
constraints and subsystem location.

e. Registrar, responsible for the initialization, finalization, and location of
subsystems and surrogates on an ongoing basis.

Such an implementation would make possible fully distributable versions of
applications using the OCA, thus achieving the degree of flexibility needed in
the design and implementation of software systems in the future.

The mapping process should be a useful addition to the development process of any
organization looking to reap the benefits of domain analysis and the systematic exploitation of
software architectures. The generic design and supporting cornponents developed from use
of a domain model and a selected architecture will greatly increase the reuse potential and
maintainability of application instances within a domain due to the common parentage of their
underlying software. Such increases translate into decreased long-term costs, an important
part in creating a competitive advantage needed to survive in today's global software
marketplace.

CMU/SEI94TR 8

References
[Abowd 93]

[Ada 83)

[AHD 85)

[Bardin 87a]

[Bardin 87b)

[Booch 87]
[Booch 93]

[Cohen 92]

[Feiler 93]

[Fermandez 93]

[Gautier 90]

[Gelemter 92]

Abowd, Gregory J.; Bass, Len; Howard, Larry; & Northrup, Linda.
Structural Modeling: An Application Framework and Development Process
for Flight Simulators (CMU/SE!-93-TR-14, ADA271348). Pittsburgh, PA:
Software Engineering Institute, Camegie Mellon University, August 1993.

Ada Joint Program Office, United States Department of Defense.
Reference Manual for the Ada Programming Language (ANSUMIL-STD-
1815A). Washington, DC: GPO, 1983.

The American Heritage Dictionary, 2nd College Edition. William Morris, ed.
Boston, MA: Houghton Mifflin Co., 1985.

Bardin, Bryce M. & Thompson, Christopher J. “Composable Ada Software
Components and the Re-Export Paradigm.” ACM SIGAda Ada Letters, Vol.
8, 1 (Jan. 1988): 58-79.

Bardin, Bryce M. & Thompson, Christopher J. “Using the Re-Export
Paradigm to Build Composable Ada Software Components.” ACM SIGAda
Ada Letters, Vol. 8, 2 (March 1988): 39-54.

Booch, Grady. Software Components with Ada: Structures, Tools, and
Subsystems. Menlo Park, CA: Benjamin Cummings, 1987.

Booch, Grady. Object-Oriented Analysis and Design with Applications.
Menlo Park, CA: Benjamin Cummings, 1993.

Cohen, Sholom G.; Stanley, Jay L., Jr.; Peterson, A. Spencer; & Krut,
Robert W., Jr. Application of Feature-Oriented Domain Analysis to the Army
Movement Control Domain (CMU/SEI-91-TR-28, ADA256590). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, June 1992.

Feiler, Peter H. Rengineering: An Engineering Problem (CMU/SEI-93-SR-
5). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, May 1993.

Fernandez, Jose L. A Taxonomy of Coordination Mechanisms Used in
Real-Time Software Based on Domain Analysis (CMU/SEI-93-TR-34).
Pittsburgh, PA: Software Engineering Institute, Camegie Mellon University,
Dec. 1993.

Gautier, Robert J. & Wallis, Peter J. L., eds. Software Reuse with Ada.
London, England: Peter Peregrinus Ltd., 1990.

Gelemter, David & Carriero, Nicholas. *Coordination Languages and Their
Significance.® Communications of the ACM, Vol. 55, 2 (Feb. 1992): 97-107.

CMU/SEI-94-TR-8

[Hefley 92]

[Kang 90]

[Krut 93]

[Lee 88]

[Marca 88]

[McNicholl 88]

[OED 87]

[Pamas 76]

[Prieto-Diaz 91]

[Shaw 90]

[Simon 81)

Hefley, Wiliam E.; Foreman, John T., Engle, Charles B. Jr., &
Goodenough, John. B. Ada Adoption Handbook: A Program Manager's
Guide, 2nd ed. (CMU/SEI-92-TR-29, ADA258937). Pittsburgh, PA:
Software Engineering Institute, Camegie Mellon University, Oct. 1992.

Kang, Kyo C.; Cohen, Sholom G.; Hess, James A.; Novak, William E.; &
Peterson, A. Spencer. Feature-Oriented Domain Analysis (FODA)
Feasibility Study (CMU/SEI-90-TR-21, ADA235785). Pittsburgh, PA:
Software Engineering Institute, Camegie Mellon University, Nov. 1990.

Krut, Robert W., Jr. Integia....y vu1 Tool Support into the Feature-Oriented
Domain Analysis Methodology (CMU/SEI-93-TR-11). Pittsburgh, PA:
Software Engineering Institute, Camegie Mellon University, July 1993.

Lee, Kenneth J.; Rissman, Michael J.; D’Ippolito, Richard; Plinta, Charles;
& Van Scoy, Roger. An OOD Paradigm for Flight Simulators, 2nd ed.

- (CMU/SEI-88-TR-30, ADA204849). Pittsburgh, PA: Software Engineering

Institute, Carnegie Mellon University, Sept. 1988.

Marca, David A. & McGowan, Clement L. SADT: Structured Analysis and
Design Technique. New York, NY: McGraw- Hill, 1988.

McNicholl, Dennis G.; Cohen, Sholom G.; Palmer, Constance; et. al.
Common Ada Missile Packages - Phase 2 (CAMP-2), Volume I: CAMP
Parts and Parts Composition System. (AFATL-TR-88-62). Eglin AFB, FL:
Air Force Armament Laboratory, Nov. 1988. Note: Distribution limited to
DoD and DoD contractors only.

The Oxford English Dictionary, Compact Ed. R. W. Burchfield, ed. Vol. 3.
Oxtord, England: Clarendon Press, 1987.

Parnas, David L. “On the Design and Development of Program Families."
IEEE Transactions on Software Engineering, Vol. TSE2, 1 (Jan. 1976): 1-9.

Prieto-Diaz, Rueben & Arango, Guillermo, eds. Domain Analysis and
Software Systems Modeling. Los Alamitos, CA: IEEE Computer Society
Press, 1991.

Shaw, Mary. “Toward Higher-Level Abstraction for Software Systems.*
Data and Knowledge Engineering 5, p. 119-128. New York, NY: North
Holland, 1990.

Simon, Herbert A. The Sciences of the Artificial, 2nd ed. Cambridge, MA:
MIT Press, 1981.

CMU/SEI-94-TR-8

[Srinivas 91]

[Stroustrup 91]

[USAF 93]
[USArmy 90]

: [Wirth 85

\ [Withey 94]
[Zaremski 93]

[001SRM]

Srinivas, Yellamraju V. “Algebraic Specifications for Domains.” Domain
Analysis and Software Systems Modeling, p. 90-124. Los Alamitos, CA:
IEEE Computer Society Press, 1991.

Stroustrup, Bjarne. The C++ Programming Language, 2nd ed. Reading,
MA: Addison-Wesley, 1991.

United States Air Force, Aviation Systems Command. An Introduction to
Software Models (USAF ASC-TR-93-5008). Dayton, OH: Wright Patterson
AFB, 1993.

United States Army. Field Manual FM 55-10: Movement Control in a
Theater of Operations. Washington, DC: Headquarters, Department of the
Army, Nov. 1990.

Wirth, Nicklaus. Programming in Modula-2, 3rd, corrected ed. New York,
NY: Springer-Verlag, 1985.

Withey, James V. Implementing Model-Based Software Engineering in
Your Organization: An Approach to Domain Engineering (CMU/SE|-94-TR-
1). Pittsburgh, PA: Software Engineering Institute, April 1994.

Zaremski, Amy M. & Wing, Jeanette M. Signature Matching: A Key to
Reuse (CMU-CS-93-151). Pittsburgh, PA: School of Computer Science,
Carnegie Melion University, May 1993.

The 001™ Tool Suite. System Reference Manual, Ver. 3. Cambridge, MA:
Hamilton Technologies, Inc., Jan. 1992

: CMU/SEI-94-TR-8

61

CMU/SEI-94-

o

. .
-

R T

[

Appendix A The Domain Design Process

This appendix contains the detailed descriptions for the process described in Chapter 4 of this
report. The details involve the specifics of completing the applicable forms as found in Appen-
dix D using the designated domain model information.

A.1 Select Features from Domain Model

No form data is completed at this point.
A.2 Create Object Specifications

A.2.1 Identify Objects

Using the Object Specification Form (shown in Appendix D.2), begin the documentation of the
object entity by giving it an appropriate Object Name and a short Description of the entity to
be refined in later steps.

A.2.2 Derive Object Operations and Input/Outputs

Document the operations derived from operational features directly into the Features to be
Supported section of the Object Specification form and those operations needed to supported
data flows in the Operational Model in the Overview of Requirements section of the same form.
For the inputs and outputs for each operation as noted in the Operational Model, enter the
information about them into the Inputs or Outputs section of the Object Specification form as
appropriate. Finally, any special or error conditions that a e needed to describe the status of
an object before or after an operation is performed are noted in the Exceptions/Malfunctions
section for appropriate consideration during further refinement and implementation.

A.3 Create Subsystem Specifications

Begin filling out a Subsystem Specification Form (shown in Appendix D.1) by entering the
Subsystem Name. The information for the Description section can be taken directly from the
textual information in the features catalog and the Overview of Requirements can be also be
taken from the features catalog as well as specific wording from a requirements document. List
the objects to be aggregated by the Subsystem under the Objects section by entering those
objects which are subfeatures of the parent feature which is being allocated as a subsystem.
For each object, copy in the required inputs and outputs from the Object Specification Form.

A.4 Create Surrogate Specifications for Logical or Physical
Devices

Fill out a Surrogate Specification Form (shown in Appendix D.3). First, provide a name in the
Surrogate Name tield and & Description. Then, enter the Type information by selection of the
control characteristics as described as above. The ~ ~nection to /O device information is
necessary to give the software developer the req.ii+ 1ents to what kind of device the

CMU/SEI-94-TR-8 63

surrogate is providing an abstraction for. For most devices, it will be important to indicate the
device name, which can be a logical device like X11 or Motif for graphical displays or a
database product like ingres or Informix for data storage, or a physical devices, like a SCSI
controlier. For some devices, it will also be necessary to note the device's buffer capability in
the size of data buffer area. The device-specific information may be deferred until later in the
surrogate's development. Finally, the Imports and Exports information is entered, as
appropriate, in terms of the MName, Type, and Source or Destination and the
Exception/Malfunction information entered, in terms of Name and Effect.

64 CMU/SEI-94-TR-8

Appendix B The Domain implementation Process

This appendix contains the detailed descriptions for the process described in Chapter 5 of this
report. The details involve the specifics of using the information on the specification forms to
fill out code templates as found in Appendix E.

B.1 Identify or Create Applicable System Engineering Units
Package(s)

No specific instructions are required at this point.
B.2 Create Subsystem _Types Package

The starting point is an Ada _Types package specification template, seen in Appendix E.2.
The tempiate provides a standard placeholder for the <subsystem_name> to be supplied by
the user. The given <subsystem_name> will be used consistently throughout the
succeeding steps that reference the subsystem-level implementation components. Create the
necessary type definitions, using the type information given on the Subsystem Specification
Form and its references to applicable parts of the information model.

B.3 Create Object Signatures Package

The Signatures package may not be needed at the object level if there are no appropriate
features to be dealt with. if such features exist, in particular alternative features, use the Object
Manager Signatures template as shown in Appendix E.5. Transfer the Object Name given on
the Object Specification Form (completed as described previously in Sections 4.2.1 and 4.2.2)
onto the template, replacing the <object_name> placeholder. For each group of
independent features, map the features onto specific names in the enumeration list and give
the enumeration type itself a name to replace the <feature_group> placeholder.

B.4 Create Object Manager Package Specification

The Object Managercode template (specification), shown in Appendix E.6, is the starting point
for this step. First, fill in the context clause section by writing wi th statements for the packages
that declare the types needed to complete the parameter profiles for the subprogram
templates. Again, transfer the Object Name from the Specification Form onto the template,
replacing the <object_name> placeholder.

For each class of error or malfunction listed in the Exceptions/Malfunctions section of the
Object Specification Form (or any otherwise efroneous conditions that potentially may
propagate out of the subprograms and into a controller body), deciare an Ada exception to be
raised at applicable points within the object body code and to be handied by name with the
controller body. Remember to document the possible users of the exception in the Raised By
comment immediately after the exception declaration statement.

CMU/SEL-94-TR-8 85

I SR " . [oo N Wt CO
. - .. 3 s W . .
T P 9 - T R e o e e, . B I S
P O P 3 e i i

As a last check, review the Overview of Requirermnents and Features to be Supported sections
of the Object Specification Form and verify that the given subprograms in the completed
Object Manager specification support all of the required operational needs allocated to the
objects.

B.5 Create Subsystem/Surrogate Signatures Package

B.5.1 Subsystem Signatures

Start with the Subsystem Signatures code template as shown in Appendix E. 1. For each object
that is to become part of the subsystem with a Signatures package, create the wi th statement
to gain visibility to the package and its contents. As with the construction of the Object
Signatures package, transfer the Subsystem Name from the Subsystem Specification Form
onto the template, replacing the <subsystem_name> placeholder. The first major step in
completing the Subsystem Signatures is to fill out the Entity_Type declaration by entering all
of the applicable objects and the entities supported by them into the enumeration list. As
discussed in Section 4.2.1, entities aru all of those data items that must be manipulaied by the
application, regardiess of whether or not they are allocated as actual objects in the resulting
subsystems. It is the combination of these entity names and the operation names that will
allow the subsystem to select the appropriate object operation.

The next step is the process of reexporting the information contained in the utilized Object
Signatures packages, if any. This is a two part process:

1. Declare an Ada subtype using a feature enumeration type as the base type.
For example,

subtype Route_Features is Router.Features_Type;

2. For each enumeration literal declared in the enumeration base type, declare
a function that retums a value of the subtype which renames the enumeration
literal. For example,

function Best return Router.Features_Types
renames Router.Best;

Lastly, incorporate the information found in the Exceptions/Malfunctions section of the
Subsystem Specification Form by completing the Status_Type declaration. For each item
listed, create a corresponding enumeration literal in the enumeration type. Two of the
predefined names in the enumeration list, Initialized and Normal (the first and last
literals in the list), are important to the implementation templates and should not be removed
or renamed. Note that the handling of the Exceptions/Malfunctions items differs from how they
were used in development of the Object Signatures and Handler specifications. The reasons
for the differences in placement, implementation, and ultimate usage will be discussed in a
subsequent report describing the OCA implementation in greater detail.

66 CMU/SEL-84-TR-8

B.5.2 Surrogate Signatures

For surrogates, the process is similar, but with a couple of important modifications. The
Surrogate Signatures code template is shown in Appendix E.11. The first important difference
of note is that there are two distinct forms of surrogate, one for user interface (Ul) devices and
another for devices not associated with Uls. The information content varies greatly between
the two forms. The nominal device surrogate Signatures package contains two enumeration

types:

1. One lists the entities (data items) that are to be processed by the surrogate
for input and output as appropriate to or from the functional subsystems.

2. The other lists the errors that the device is capable of generating.

Ultimate completion of the surrogate Signature packages (and the Controlier specification and
body) must be deferred until the application is defined. However, we can begin the process.
In particular, the basic structure can be selected by removal of inappropriate template items
and entry of the package name can be done by replacing the <device_name> placeholder
with the Surrogate Name from the Surrogate Specification Form. Further work is deferred until
the process described in Section 6.2.1 begins.

B.6 Create Subsystem/Surrogate Controller Package
Specification

The Subsystem Controller code template (specification) is shown in Appendix E.3. This is an
extremely simple template to complete, as there is only one unique placeholder, that for the
<subsystem_name>, that must be replaced with the actual Subsystem name from the Spec-
ification Form, one for each occurrence of the placeholder in the template.

The Surrogate Controller code template (specification) is shown in Appendix E.12. Just as was
done in the previous section we can begin the completion of the Controller Code template by
replacing the <device_name> placeholders with the Name given on the Surrogate Specifica-
tion Form.

B.7 Create Subsystem/Surrogate Import and Export
Packages

The Export package code template is shown in Appendix E.8. The first step is to replace the
occurrences of the <subsystem_name> placeholder with the appropriate Subsystem Name.
Remove any unneeded wi th statements or add any additional references as determined from
the Type information for the Exports section of the Specification Form. Then, for each data
item listed in the Exports section, complete an instance of the template for declaring exported
values, filling out the <exported_value_name> using the Export Name information on the
form and the applicable data type and package information placeholders.

CMU/SEI-94-TR-6 &7

o

The Import package code template comes in two parts. The Specification portion is shown in
Appendix E.9. To begin filling out this template, replace the <device_name> placehoider with
the applicable Subsystem Name from the Specification Form. Also, fill in the names of the
other subsystem or package placeholders where data types to be imported are declared. The
use of the Application_Signatures package is needed only if there is a case where the same
data item (by type name) can be imported from two or more sources, depending upon the
current operation being performed at the executive level. Remove this reference if all imports
come from unique sources, as determined by examination of the Source field of the Imports
section of the Specification Form. Then, for each item listed in the Imports Name section,
complete an instance of the import function template using the Name and Type information to
obtain the needed replacement for placeholders.

When the import package specification is completed, begin the work of filling out the corre-
sponding Body tempiate, shown in Appendix E.10. Here is where the important task of binding
data exports to corresponding imports is performed. Begin by replacing the placeholders for
the <subsystem _name> and <other_export>$ using the Subsystem Name and the Import
Source data to delineate the applicable export packages to be withed in (hence, the neces-
sity to declare the export packages before the imports). Then, for each import function de-
clared previously in the package specification, create an equivalent function body of the
applicable type corresponding to the need to specify a From source. In most cases, the func-
tion body will simply retum the data value exported by the data object in the Export package.
In the case of multiple sources, the From parameter will be used to select the appropriate arm
of the case statement and return the applicable data object from the corresponding Export
package. Again, some of the Source export packages will not be available until the surrogates
are completed later as described in Section 6.2.3 and Appendix C.2.3.

B.8 Create Subsystem/Surrogate Controller Package Body

The Subsystem Controller code template (body) is shown in Appendix E.4. Begin the
completion of the template by replacing the <subsystem_name> placeholders that occur
throughout the template. Note that when this replacement is performed, the Types, Imports,
and Exports packages are now correctly named for use in the Controller package body code.
Next, replace the <object> placeholders with appropriate references to Objects as defined
in the Objects section of the Subsystem Specification Form. These two sets of replacements
complete the context clause for the Controller body. The next step is to complete the bodies
for the operational subprograms using the sequence of events information discussed in
Section 5.8.

Events 1 and 2 are impiemented by creation of an Ada case statement containing when
clauses for each entity to be handied and using the others syntax with a null statement or
error condition to complete the list of entity altematives. Event 3 is implemented by filling in a
call to the applicable Object operation for the entity to be handled and corresponding to the
semantics of the subsystem call. Event 4 requires the use of an exception handler at some
level within.the procedure body. Depending on the effect desired, exception can be handied

68 CMU/SEI-94-TR-8

within the block statement that encapsulate the Object call with a specific exception handler,
or with a single exception handler just preceding the end of the subprogram being
implemented.

Repeat this step as needed for each subprogram stub in the Controller body. Finally, add calls
to applicable operations for any Objects that require explicit initialization in the final statement
block prior to the initialization of the Internal_State variable.

The Surrogate Controller code template (body) is shown in Appendix E.13. After filling the
placeholders and creating the body stubs for the procedures defined in the Controlier
specification, create the template by calling the operations needed to handle each call using
the Handlers and Transform packages. The style of these package is dependent upon the
implementation strategy used which is discussed in Section 5.6 of the report.

B.9 Create Object Manager Package Body

The Object Manager code template (body) is shown in Appendix E.7. After the replacement of
the <object_name> placeholder and the <subsystem_name> placeholder to with in the
applicable subsystem Types package, the only other predefined step is to generate a body
skeleton for each operation declared in the Object Manager specification (completed in Sec-
tion 5.4).

CMU/SEI-94-TR-8 69

CMU/SEI-94-TR-8

”

iy A e vy e

| 2 RS VI

Appendix C Using a Generic Design in Application
Development

This appendix contains the detailed descriptions for the process described in Sections 6.1 -
6.3 of this report. The details involve the specifics of using the information on the specification
forms to fill out code templates as found in Appendix E.

C.1 Create an Application Signatures Package

The Application Signatures code template is shown in Appendix E.14. First, the Application
Aggregate enumeration type definition is completed by naming each subsystem and surrogate
to be used in the application. This declaration will allow the executive to use the names of the
subsystems and surrogates in its decision logic. Two subtype declarations provide the
application with a single typename for use in describing the subsystem and surrogate subsets.

The next step is to define an enumeration type which defines the callable operations to be
supplied by subsystems and their underlying objects. The template gives a predefined set of
names: Construct, Destruct, and Fetch. These names correspond to those names given to the
callable subprograms supplied in the subsystem controller and object manager templates.

The last step is to define an enumeration type to describe an appropriate namespace for the
overall state of the application, i.e., the executive state. Again, the template predefines a useful
three state system:

1. Initialize - the system state before the executive invokes any subsystems and
surrogates to bring the system to a defined state of usability.

2. Steady - the system state in which the application is able to perform its
intended function(s).

3. Finalize - the system state in which the application, if possible, shuts itself
down in an orderly manner, saving system changes as listed before final exit.
Other states may be added as necessary for the executive to maintain an overall understand-
ing of the state of the application.

C.2 Complete Packages Making Use of Application
Signatures

C.2.1 Complete Surrogate Signatures Package

The first step in the process is to complete the /mports and Exports sections of the Surrogate
Specification Form started in Section 4.4. Name all of the values exported by the subsystems
for the surrogate’s use (as listed in each subsystem's Exports Destination field) as Imports with
the corresponding Source. Similarly, name each value to be imported by the subsystems
whose Source is given as the applicable surrogate, and create a corresponding Export value

CMU/SEI-94-TR-8 4!

E.11 Surrogate Signatures Code Template

with the appropriate Destination. This information is needed to complete the Signatures
package because the entities to be handled by the surrogate must be defined via the
enumeration namespace.

C.2.2 Complete Surrogate Controller Package Specification
No additional description for implementation is needed at this paint.

C.23 Complete Surrogate Import/Export Packages
See Appendix B.7 for details previously described.

C.2.4 Complete Subsystem import Package Body

For each appropriate subsystem that can supply a needed data type for import, create a case
arm and name the applicable data item Name from its Export package. Be sure to use the
when others => null; clause to account for the unused subsystems.

C.2.5 Compete Surrogate Controller Package Body

The Application_To_Device and its converse Device_To_Application subprograms are filled
in using a format equivalent to that given for the subsystem controller subprogram bodies,
where the ENTITY parameter is used io select the appropriate branch/arm of a case statement
to invoke the applicable subprograms from the Transforms and Handlers accessible from with-
in the controller package body.

C.3 Complete the Executive Template

The Ada code template to use as a starting point is shown in Appendix E.15. Aithough the
construction of the executive will involve the construction of a significant amount of code
spanning many kinds of operations within an application, there is a recurring sequence of
steps to follow for each executive operation:

1. Itthe operation is invoked due to a transfer of control (i.e., a Signal retum from
a surrogate), then use the appropriate Device_To_Application as needed to
transform and move any associated data to the surrogate’s Export package.

2. Determine if a control loop exists between two subsystems and/or surrogates
with respect to the movement of multiple data items between. If one exists,
determine the appropriate Signal return value from a subsystem to be used
to terminate the loop.

3. Call the appropriate sequence of subsystem or surrogate subprograms to
achieve the desired effect, using the operational model as the basis for
determining what to call and in what order. The executive must pass the
subsystem the appropriate Entity, and possible Feature, information.

4. Ensure any potential error conditions are checked for after subsystem
operations by invoking the Signal function and comparing the resuits to the
nominally expected Normal value.

72 CMU/SEI-94-TR-8

5. |f the operation’s final result is to send output via a surrogate, use the
appropriate Application_To_Device to initiate this output. Alternately, if a
subsystem generates an error to be displayed by the Ul device, the Ul
surrogate's / pplication_To_Device subprogram that uses the
Error_Return_Type must be invoked.

Step 2 through 5 are applicable even in the initialization and finalization states of an
application, as much processing by subsystems is performed to upload initial state from
external storage, and, conversely, to download or verify final state prior to application
termination.

It is possible to segment the levels of decomposition into smaller Ada program units, if desired,
by using the “separate” facility of the language to create extra subprograms that still maintain
full visibility of the executive’s control information, most importantly, the Status_Type record.

CMU/SEI-94-TR-8 73

T P ey R e e AT W

-
A A 45 Y B o 0 b
i B .
r. .« .

74 CMU/SEI-84-TR-8

Appendix D Specification Form Templates
D.1 Subsystem Specification Form

Subsystem Name.:
Description:

Overview of Requirements:

Features to be Supported.
Objects:
Imports:
Name Type Source
Exports:.
Name Type Destination

Exceptions/Malfunctions:
Name Effect

CMU/SEI-94-TR-8 75

s <-“mv-wqu T T

D.2 Object Specification Form

Object Name.

Description:

Overview of Requirements:

Features to be Supported.

Imports.
Name

Type

Exports:

Name

Type

Exceptions/Malfunctions:.

Name

Effect

78

CMU/SEI-94-TR-8

D.3 Surrogate Specification Form

Surrogate Name:
Description.

Type: monitor control (check one or both)

Connection to 1/O device:
device name
size of data buffer n bytes)

Imports (for monitor surrogate):
Name Type Source

Exports (for control surrogate):
Name Type Destination

Exceptions/Malfunctions:
Name Effect

Y VO TP

CMU/SEI-94-TR-8 77

-t ——

CMU/SEI-94-TR-8

Appendix E Ada Code Templates
E.1 Subsystem Signatures Code Template

with <object_name>_Signatures; -- as needed for each object.
package <subsystem_name>_Signatures is

-- every subsystem controller has to differentiate between
-- the many objects and their parts that may be used.

-- Objects may perform operations differently depending
-- implemented or user-selected features, so entity names
-- may be combinations of entity and feature identifiers.

type Entity Type is (<Ent_Name_ 1>, <Ent Name 2>,
<Ent_Name_3> .. <Ent_Name_n>);

-- Subsystems may return errors and/or other Sigmal
-- information. Always includes a “Normal” or “OK~.
-- This type can be extenced to incorporate any error
-- conditions to be propogated to the executive.

type Status_Type is (Initialized, Incomplete, Complete,
Invalid, Normal);

type Error_Type is record
STATUS : Status_Type;

ENTITY Entity Type:;
end record;

end <subsystem_name>_Signatures;

E.2 Subsystem _Types Code Template

package <subsystem_name>_Types is
type <named_entity type> is;

-- Declare your types for import and export here if not
-=- declared elsewhere.

end <subsystem_name>_Types;

CMU/SEN-84-TR-8

g] Dot e
AP .. T - . v

T R SV i u I 2y gt
> Al o S M : ﬂ:ﬁﬁ‘ 2

S -~

E.3 Subsystem Controlier Code Template (Specification)

with Application_Signatures; -- if Source parameter used
with <subsystem_name>_Signatures;
package <subsystes_name>_Controller is

-- Every subsystem controller has at least 3 procedures
-- callable by the executive, derived from these below
-- Optionally, the exscutive may require use of the

-- SOURCE parameter if multiple sources exist for

-- a particular data item.

procedure Construct(ENTITY: in
<subsystem name>_Signatures.Entity Type
-- SOURCE : in
-- Application_Signatures.Subsystem_Type
):

procedure Destruct(ENTITY: in
<subsystem_name>_Signatures.Entity Type);

procedure Fetch(ENTITY: in
<subsystem_name>_Signatures.Entity Type);

-- AMditionally, each subsystem may provide means to
~-- provide control information to the executive

function Signal return
<subsystem_name>_Signatures.Status_Type;

end <subsystem name>_Controller;

80 CMU/SEI-94-TR-8

- —

E.4 Subsystem Controller Code Template (Body)

with SEU; -- global types

with <subsystem name>_Types; -- the ‘local’ types
with <subsystem_name>_Imports;

with <subsystem_ name>_Exports;

-- all objects that are part of this subsystem
with <objectl>_Manager;

with <objectn>_MNanager;

package body <subsystem_name>_ Controller is

~=- local variables declared here

INTERNAL_STATE : <subsystem_name>_Signatures.Status_Type;

procedure Construct(ENTITY: in

<subsystem_name>_Signatures.Entity_ Type;
SOURCE : in Application_Signatures.Subsystem) is

begin
case ENTITY is

-- algorithm for choosing correct Entity Comnstruct call

end case;
end Construct;

procedure Destruct(Entity: in
<subsystem_name>_Signatures.Entity Type) is
begin

-- algorithm for choosinging correct Entity Destruct call

end Destruct;

procedure Fetch(Entity: in
<subsystem_name>_Signatures.Entity_Type) is
begin

-=- algorithm for choosing correct Entity Fetch call, etc.

end Fetch;

function Signal return

<subsystem_name>_Signatures.Status_Type is

Status : <subsystem name>_Signatures.Status_Type
¢=s INTERNAL_STATE;
begin

INTERNAL_STATE := <subsystem_name>_Signatures.NORMAL;

return Status; -- return an appropriate value
end Signal;

begin
-=- any initialization code goes before this statement

INTERNAL_STATE := <subsystem_name>_Signatures.INITIALIZED;

end <subsystem_name>_Controller;

CMU/SEI-94-TR-8

81

E.5 Object Manager Signatures Template
package <object_name>_Signatures is

type <features_group> is (<feature_1l>, ..., <feature_n>);

end <object_name>_Signatures;

E.6 Object Manager Code Template (Specification)

with SEU; ~-- global types

with <object_name>_Signatures; -- if used!
with ...; -- other needed data types;
package <object_name>_Manager;

-=- The procedures below are overloaded as needed for each
-- parameter profile. Add parameters to facilatate use of
-- features in the Signatures package as required.

procedure Construct (
<In_Parameter_1l>: in SEU.<In Type_1>;
<In_Parameter_2>: in SEU.<In Type_2>);

procedure Destruct (
<In_Parameter_1l>: in SEU.<In_Type_1>;
<In_Parameter 2>: in SEU.<In Type_2>);

procedure Fetch (
<In_Parameter_l>: in SEU.<In_Type_1>;
<In_Parameter_2>: in SEU.<In_Type_2>;
<Out_Parameter_1>: out SEU.<Out_Type_ _1>;
<Out_Parameter_2>: out SEU.<Out_Type_2>);

-=- Export any error information as exceptions to
-=- calling Subsystem and name the subprogram(s)
-- able to raise them.

<Error_Condition_1> : exception;
- r‘i'd w eo e

<Error_Condition_n> : exception;

end <object_name>_MNanager;

82 CMU/SEI-94-TR-8

E.7 Object Manager Code Template (Body)

with 8EU; -~ global types
with <subsystem_name>_Types; -- ‘local’ types

package body <Object>_Manager is
type <Local_Object> is ... ;

-~ declaration of state data
<Object_Name> : <Local_Object>;

procedure Construct (
<In_Parameter_1l>: in SEU.<In_Type_1>;
<In_Parameter_2>: in SEU.<In_Type 2) is

begin
-- algorithm goes here

end Construct;

procedure Destruct (
<In_Parameter_1l>: in SEU.<In_Type_1>;
<In_Parameter_2>: in SEU.<In_Tvpe_2>) is
begin
~-- algorithm goes here
end Destruct;

procedure Fetch (
<In_Parameter_1>: in SEU.<In_Type_1>;
<In_Parameter_2>: in SEU.<In_Type_ 2>;
<Out_Parameter_1l1>: out SEU.<Out_Type 1>
<0ut_Parameter_2>: out SEU.<Out_Type_2>) is
begin
-- algorithm goes here
end Fetch;

end <Object>_Manager;

E.8 Export Package Code Template

with SEU; -- global types
with <subsystem_name>_ Types; -- ‘local’ types

package <subsystem_name>_Exports is
<exported_value_name_1l1> : SEU.<type_name>;

<exported_value_name n> :
<subsystem_name>_Types.<type_name>;

ond <subsystem_name>_ Exports;

CMU/SEI-94-TR-8

E.9

Import Package Code Template (Specification)

with SEU; -- global types

with Application Signatures;

with <subsystem_ 1l _name>_Types; -- other subsystem types
with <subsystem N name>_ Types; -- as needed

package <subsystem name>_Imports is

function <importl> return <imporxtl_type>;
function <importa>
(From : in Application_Signatures.Subsystem)
return <importi_type>;

end <subsystem_name>_Imports;

E.10 Import Package Code Template (Body)

with <other_exportl>;
with <other_export2>;
package body <subsystem name>_ Imports is

function <importl> return <importl_type> is
begin

return <other_exportl_data>;
end;

function <importa>
(From : in Application_Signatures.Subsystem)
return <import2_ type> is
begin
case From is
when <subsystem_X> =>
return <other_export2_data>;
end case;
end;
end <subsystem_name>_Imports;

CMU/SEI-94-TR-8

é

D e L R

e B sttt o el bbbl i et

»

) PR - e
L)

b

E.11 Surrogate Signatures Code Template

-- These ‘withs’ are needed only for UI device
with Application_Signatures;

with <subsystem_1>_Signatures;

with <subsystem_n>_Signatures;

package <device_name>_Signatures is

-- Depending upon the number of items, the device
-- can either declare its own Entities or use those names
-- declared in other S8ignatures packages.

-~ Devices may return errors and/or other Signal
-- information. Always includes a “Normal” or “OK”.
type Status_Value is (Initialized, ... , Normal);

-- For the surrogate to a User Interface device, the
-- Status_Value is a layer of records that provide the
-~ Executive with the user selected operations/options.

type Status_Value(SUBSYSTEM :
Application_Signatures.Subsystem Type) is
record
Operation :
Application_Signatures.Operation_Type;
case SUBSYSTEM is
when <subsystem_1l1> =>
<subsystem_1>_Entity :
<subsystem_1>_Entity Type;
when <subsystem_n> =>
<subsystem_n>_Entity :
<subsystem_n>_Entity Type;
end case;
end record;

-=- Also need to make the Error info. available to the UI

type Error_Return_Type(SUBSYSTEM :
Application_Signatures.Application_Aggregate) is
record
case SBUESYSTENM is
when <subsystem_ 1> =>
<subsystem_1>_Error :
<subsystem_1l1>_Signatures.Error_Type;
when <subsystem_n> =>
<subsystem_n>_Error :
<subsystem_n>_Signatures.Error_Type;
end case;
end record;

end <device_name>_Signatures;

CMU/SEI-94-TR-8 85

P
;é"
4
>
s
K
] e
k]

%

4
i

LS A

E.12 Surrogate Controller Code Template (Specification)

with <device_name>_Signatures; -- Signal return values
with <subsystem_l>_Signatures; -- Subsystems to be handled

with <subsystem_n>_Signatures;
package <device_name>_Controller is

-- Send application data (via Export) to device
procedure Application_To_Device(Entity : in
<subsystem_x>_Signatures.Entity Type);

-- Receive data from device
procedure Device_To_Application(Entity : in
<subsystem_x>_Signatures.Entity Type);

-- For the UI ‘device’, there is a notion of a Key which
-- is sent in isolation so that the application can Search
-- for a complex value based on the given Key.

type Data_Kind is (Key, Entity);

X procedure Device_To_Application(
' Entity : in <subsystem_x>_Sigmatures.

Entity Type;
Kind : in Data_Xind);

-- Receive status/error information from device
function Signal return
<device_name>_Signatures.Status_Value;

end <device_name>_Controller;

E.13 Surrogate Controller Code Template (Body)

package body <device_name>_Controller is

procedure Application_To_Device(Entity : in
<subsystem_x>_Signatures.Entity_Type) is
begin
-~ select proper transform algorithm
end Application_To_Device;

procedure Device_To_Application(Entity : in
<subsystem_x>_Signatures.Entity Type) is

begin

end Device_To_Application;

-- or

procedure Device_To_Application(
Entity : in <subsystem_x>_Signatures.Entity Type;
Kind : in Data_Kind) is

begin

end Device_To_Application;

-- Receive status/error information from device
function Signal return

<device_name> Signatures.Status_Value is
begin

return ...;
end Signal;

end <device_name>_Controller;

et AR S

CMU/SEL-94-TR-8

O

P N G R Tt 2

E.14 Application_Signatures Code Template
package Application_Signatures is

type Application_Aggregate is (
<surrogate_1>, <surrogate_n>,
<subsystem_1>, <subsystem_ 2>,
eeey <subsystem_n-1>, <subsystea_n>);

subtype Surrogate_Type is Application_Aggregate
range <surrogate_l> .. <surrogate_n>;

subtype Subsystem Type is Application_Aggregate
range <subsystem_1l> .. <subsystem_n>;

== The ‘common’ operation names!
type Operation is (Construct, Destruct, Fetch);

type Application_State is (Initialize, Steady, Finalize);

end Application_Signatures;

e B e e WS P L ae i

E.15 Executive Tempiate
with <subsystem_1>_8Sign as;
with <subsystem_n>_8Sigr 08}
with Application_Signatures;

with <subsystem_ 1l1>_Controller;
with <subsystem_n>_Controller;

procedure Executive is

-- Renaming of all ‘with’ed packages to improve readability
package APP renames Applicatior ¢l matures;

Program_State : APP.Application_sica'. := APP.INITIALIZE;
User_Selection : xxS.Status_Type;

begin
== Call any needed initialization proceduras here!

Program_State := APP.STEADY;
while Program_State = APP.STEADY loop
User_Selection := UIC.Signal;
case User_Selection.Subsystem is
when APP.<subsystem_ 1> =>

case User_Selection.Operation is
when APP.Construct =>
case User_Selection.<entity name> is
when xxS.<entity 1> =>

case User_Selection.<feature_group> is
when xx8.<feature_name> =>

end case;

when xxS.<entity n> =>
xxC.Construct(<entity n>);

end case;
when APP.Destruct =>
when APP.Fetch =>
end case;

end case;
end loop;

-=- Call any finalisation procedure here; '
end Exsctutive; ;,;ﬂ

N g—

LA agf e Aegal T

Appendix F Implementation Issues Affecting
Reuse

Appendix F discusses some of the implementation issues dealt with during the trial usage of
these processes, focusing on Ada language interface issues, and the idiosyncrasies found in
implementations of Ada input/output packages. [Hefley 92] contains more information about
other such issues involved in the use of Ada. This appendix also provides some specific ex-
amples of “C*! code used in the user interface portion of the movement control prototype used
as the example case in the report, focused mainly on the description of several reusable ab-
stractions for X/Motif input and output.

F.1 Interfaces to Other Languages/Environments

One of the perceived strengths of Ada is its ability to interface to code written in other
prcgramming languages. However, this strength is not without caveats. First, the Ada
language’s interface capability is NOT required to be supported by valid Ada compilers .2
Second, even if the compiler does support the interface capability, how the interface is
implemented is vendor dependent, other than the required use of the pragma Interface. Third,
the reverse capability of calling Ada from other languages is not defined with the language >
None the less, most Ada implementations are providing the interface capability and many of
the vendors are using a standard (yet still somewhat ad hoc) nomenclature for their interface
pragmas.

F.1.1 Use of X11 and Motif with Ada

Access to Ada bindings for X11 and Motif is the preferred means for utilizing the powerful
functionality provided by these pieces of software for creating a Graphical User Interface (GUI)
to be used in highly interactive applications. Unfortunately, not everyone has access (due to
cost considerations, chief among many reasons) to usable bindings for current, i.e., widely
used, versions of X11 or Motif.# However, due to the interface capabilities described above,
one can write a GUI using X and Motif calls in the C language. There are two major issues
involved in doing this:

1. The X/Motif event loop must be able to respond to user events (i.e., mouse
movements, button or key presses and releases) in a thread of control sepa-
rate from that maintained by the executive and other subsystems. This need
requires that Ada’s tasking mechanisms be used to provide the ability to han-
die multiple threads of control.

! The “C" programming language will be referred to hereafter without the use of quotation marks for brevity.
2 See [Ade 83}, 13.0(4).
3 See[Ada 83], 13.9(6).

4 X11RS and Motit v1.1 at the time of this report.

2. Itis difficult, it not impossible, to ensure that various C implementations use
the same intemal representation for st ructs, the Ada equivalent of records.
The equivalent of the Ada representation specification clause, documented in
Section 13.4 of [Ada 83, is not available in C. Even though most C compilers
do not attempt to reorganize structs in order to optimize the storage size or
alignment of intemnal fields, there is no requirement that they maintain the

" representation given. Thus, there is no guarantee that data structures are
portable across muitiple platforms and compilers.

The net result is that there is no way to ensure that data structures written to
be transferable across languages in one environment will be reusable in
another environment. Therefore, the lowest common denominator solution is
to choose a single data type that can hold, in theory, information of any other
data type and have the language transform important data structures into and
out of the single data type.

The common data type is the stning, an array of or pointer to a sequence of characters, which
in C is logically terminated by the ASCIl NUL value (zero) and in Ada by the fixed size of the
array. Both languages provide useful functions that take numeric-based data and transform it
into string equivalents and vice versa. As long as the code in both languages knows the order
in which the data is embedded in the string, each can maintain record structures for internal
use, but aiso transfer data between each other using the string as the common structure.

Section F.3 documents some C/X/Motif subprograms that are reused, in some cases dozens
of times, throughout the GUI code in the movement control example.5 The Print and
conversion functions described therein provide some of the mechanisms used to deal with
issues related to the use of strings as the data transfer method.

F.1.2 Calling C Within Ada and Ada Within C

To call Ada code from C, the C language requires that the subprogram be specified using the
extern notation to identify the subprogram whose implementation must be matched with the
specification at link time. Similarly, the Ada language uses compiler directives called pragmas
to identify subprograms whose implementation (body) will be either supplied by another
language (importation of functionality), or whose implementation satisfies the needs of a
subprogram specified in another language (exportation of functionality).

F.1.3 Ada Tasking in an Application with a C/“X"-Based GUI
The end resutt of using all of the capabilities listed in the previous sections is a tasking
architecture for systems with a GUI illustrated in Figure F-1.

This figure shows a design utilizing four Ada tasks. Two of the tasks, Blocking Input and
Biocking Output, are passive buffer tasks that provide a mailbox capability for data, i.e.,
strings. They are passive in that they do not make any calls, they are only called by their users,

s ::tm.mmmm).mmpmmbrmem is not included in Appendix H where example

f g2 CMU/SEI-4-TR-8

v e 50 A RIS e 3

as shown by the small control arrows in the figure. The Blocking feature is used to ensure that
if one data block is sent, another data block cannot be sent until the first has been received,
i.e., removed from the mailbox. This ensures that no data is lost and that data blocks are
received and used in the correct order. The other two tasks are active, the Executive (the main
program task) and the GUI. This Ada task utilizes the Ada calling C capability to run the C main
procedure, which maintains the X Event loop as recuired. The C calling Ada capability is used
in the implementation of the sendbuf and rcvbuf routines, which really are calls to Ada task
entries for the Blocking Input and Output tasks.

Blocking
Ada_Read Z Input sendbuf
A\
Executive , &I‘Jl:‘/ 'I‘Cals;l((/
& Subsystems Motif)
//
Ada_Write \A revbul
Blocking
Output

Figure F-1: Tasking Architecture Using a Separate X Event Loop
F.2 Using Ada /O for Files

Another area where many current Ada compilers present some problems in the
implementation of the example code is in the use of Ada file formats. Some mechanism was
needed for maintaining some persistent storage of useful data, like maps, organized convoys,
vehicle data, etc. In full implementations of movement control systems, a database system,
usually a relational database, is the preferred means for storing and accessing large amounts
of interrelated data. Because of the nature of the project and the complexity of designing a
suitable database schema, the exampie code uses file handling capabilities provided by the
Ada language. in particular, a package called Direct_IO provides (in theory) random access
to data in file via use of a COUNT value that produces a unique key to provide more direct
access to records. Unfortunately, at least one compiler had problems in its Direct_IO
implementation when Ada variant records of different sizes were required in the same files.

D™ -,

One implementation was unable to keep track of a suitable End_Of_File (EOF) marker, and
thus, raised various exceptions when the EOF was not found. Therefore, altemate
implementations of some of the subsystem /O packages were required, using the
Sequential_lO package as the basis for storing data and using additional Text_lo files to store
some information about the number of records, etc. that Direct_IO provides intrinsically. Even
then, some compilers require use of the implementation-dependent file attribute, FORM, to
make the file format needed acceptable.

F.3 Motift/X/C Code Examples

This section presents some examples of code developed for the initial version of the GUI for
the movement control prototype built to iliustrate the utility of the Mapping Processes. The
code and these descriptions were written by Mr. Greg Walker, a summer intern on this project
in 1992.

F.3.1 Print Function

The function mySprint £ () works a lot like the standard C I/O function sprintf () except
that the result is written in a static buffer. This relieves the calling routines of having to declare
a buffer. The drawbacks are that subsequent calls to mySprintf () overwrite the previous
call's results and the buffer 1. 1s a fixed size. mySprintf () enables code fragments such as:

char buffer[64];
sprintf (buffer, “the answer is %4~7,56);
doSomethingWith(buffer);

to be rewritten as:

doSomethingWith (mySprintf (“the answer is %d~7,56));

F3.2 Converting Strings Between X11 and C

The function unxmString() is a wrapper around XmStringGetLtoR () which converts
XmStrings into C strings. Each call tounxmString () frees the result of the previous call. Like
mySprintf (), subsequent calls to unxmString() destroy the results of previous calls.
unxmstring enables code fragments such as:

char *text;

XmStringGetLtoR(string, XnSTRING_DEFAULT_CHARSET, &text);
doSomethingWith(text);

XtFree(text);

to be rewritten as:

doSomethingWith (unxmsString(string));

o4 CMU/SEL-94-TR-8

et e

W e e 1o

The function xmString () is a wrapper around XmStringCreateLtoR () which converts C
strings into Xmbtrings and it also relieves the caller from having to free the result. It gets
around the problem of subsequent calls destroying the resuits of previous calls by keeping, in
an array, the last 100 resuits generated. The 101st call to xmString frees the st result, the
102nd call frees the 2nd result, and so on. This way fragments such as:

doSomethingWith (xmString (*Hello”) ,xmString(“*World~))

will work in a desirable manner, that is, the 2nd call to xmString () does not destroy the result
of the 1st call.

F.3.3 Routines Utilizing Abstractions of Motif Widgets

The routine feedListWidget () is a wrapper around XmListAddItemUnselected ()
which accepts an array of items to be added. Also, it accepts the items as C strings and takes
care of converting them to XmStrings. This is used primarily in the input() described below.

The routine popupMessage () creates a message dialog shell/box, displays a message, and
returns the users response. The parent argument is a widget to be used as the parent for the
dialog; the dialog will probably pop up on top of it. The type specifies the symbol to be
displayed beside the message; it must be one of the valid dialogTypes for a Motif
MessageBox. If the type is XmDIALOG_ERROR, XmDIALOG_INFORMATION, oOf
XmDIALOG_MESSAGE, the cancel button will not be displayed. The message argumentis a C
string.

popupMessage () retums 0 if the user clicks Ok or -1 if the user clicks Cancel. A problem with
this routine is that in order to prevent the user from doing anything eise with the application
until he has answered the dialog, the root widget's sensitivity is set to False; this causes some
widgets to change their appearance.

The routines popupCancelCallBack() and popupErrorMessage() are trivial helper
functions. popupErrorMessage () is a wrapper which sets the type to XmDIALOG_ERROR.

The input () function is a generalized means for creating dialog boxes which allow the user
to enter/edit information. The dialog boxes can contain fields of various types which are
constructed using enumeration literals and parameters as follows:

input (parentWidget,
iLabel, "Hello world.”,
iBoolean, “this is a boolean”,&booleanVariable,
iEnum, “zero”, “one”, “two”, “three”, NULL, &intVariable,
istring,“Name:”, GcharPointerVariable,
iInt,“Age:”,&intVariable,)
irloat,“Your best estimate of pi”, afloatVariable,
iNewColumn,
iSelection,arrayofstrings,sizeOfArray, &charPtrVar,
NULL) ;

CMU/SEI-94-TR-8 85

o

P

Each of the field types can be used as follows:

® jLabel creates a label widget displaying the given string.

® i Boolean creates a togglebutton displaying the given string. The button’s
state is initially set to the value of the given boolean variable. If and when the
user clicks Ok, the boolean variable is updated to the current value of the
toggleButton; the variable is left unchanged if the user clicks Cancel.

¢ i Enum creates a radioBox using the 7zven NULL terminated list of strings.
The value of the intVariable determines which of the radioButtons is initially
set. If and when the user clicks Ok, the intVariable is updated to reflect that
radioButton which is currently set; if the user clicks Cancel, the intVariable is
left unchanged.

® istring, iInt, and iFloat will each create a textField with a label beside
it, allowing the user to edit a string/int/float. Inthe cases of i Int and iFloat,
the variable will not be changed if the user types in something that is not a
number. In the case of i String, the initial value of the variable is assumed
to be a malloc’ed C string. If the user changes it and clicks Ok, the old value
will be free’ed and space for the new value will be malloc’ed.

* iNewColumn says that a new column should be created and subsequent
fields should be placed in it. All the previous fields were arranged in a single
vertical column.

® iSelection creates a scrolled list using the given arrayOfStrings, and aiso
creates a textField which is managed a lot like a textField created by
istring except that the user can also set the string by clicking on one of the
items in the list.

® The list of field deciarations must be NULL terminated.

input () accepts a variable number of arguments so that arbitrarily large dialog boxes may
be created. input () makes no attempt to check its arguments for errors; the programming
utilities cc and 1int won't help either.

input () assumes that the *XmList.visibleItemCount resource is set to a reasonable
value. This is done in the fallbackResources. input () issues the same return values, and
has the same problem with sensitivity as popupMessage ().

The routine drawIcon() draws a pixmap (icon) whose dimensions are width*height,
centered about the point (x,y). It also centers the label undemeath the pixmap.

96 CMU/SE!-94-TR-8

Appendix G Sample Completed Specification
Forms

G.1 Asset Manager Subsystem Specification

Subsystem Name:
Asset_Manager

Description:
Manages the assets involved in movement planning (vehicles, transportation networks, equip-
ment).

Overview of Requirements:
Manage information about military vehicles and combinations ¢ ! vehicles.
Source: CMU/SEI-91-TR-28, section D.2.4.5.

Features to be Supported:

Determination of vehicles needed to facilitate a move or series of moves, in support of the
planning of movement operations.

Source: CMU/SEI-91-TR-28, section E.1.1.3.

Objects:
Vehicle
imports:
Name Type Source
Model_Or_Combo_ID Vehicle_Types.Model_ User_lInterface
Type
Vehicle_iD Vehicle_Types.Specific_ User_Interface
Vehicle_Id
Vehicle Vehicie_Types.Vehicle_ User_Interface,
Type Data_Base
Combination Vehicle_Types.Vehicle_ Data_Base
Combination

Exports:

Name Type Destination
Vehicle Vehicle_Types.Vehicle_ User_Interface, Data_Base
Type
Vehicle_Combination Vehicle_Types.Vehicle_ Convoy_Builder, Data_Base
Combination

Exceptions/Malfunctions:

Name Effect
Asset_Manager_Signatures.INVALID Fetch of specific asset information not
found in object

»

z (. :

i .

¥ ¢

i £

s 06 CMU/SE!-94-TR-8 R

¢ i

¥ :

! Fg

i £

: bR
e

B e U N - U
. o, e : : oA SEL P S .- Lo R e eyt

G.1.1 Vehicle Object Specification

Object Name:
Vehicle

Description:

Stores information about vehicles and combinations of vehiclas.

Overview of Requirements:
Information includes vehicle ID, type, width, height, length, and load-carrying capacity.
Source: CMU/SEI-91-TR-28, section D.2.4.5.2.3.

Features to be Supported:

Allow the user to enter, delete, and find vehicle type and other composition data (e.g. height,
width, weight) relevant to convoy building.

Source: CMU/SEI-91-TR-28, sections E.1.1.3.1.1and E.1.1.4.1.1.4.

imports:
Name Type
Model_Or_Combo_!ID Vehicle_Types.Model_Type
Vehicle_ID Vehicle_Types.Specific_Vehicle_Id]
Vehicle Vehicle _Types.Vehicle_Type
Combination Vehicle_Types.Vehicle_Combination
Exports:
Name Type
Vehicle Vehicle_Types.Vehicle_Type

Vehicle_Combination

Vehicle_Types.Vehicle_Combination

Exceptions/Malfunctions:
Name Effect
Not_Found Fetch of information relating to vehicles or
combinations abandoned because of
missing or incorrect data.
CMU/SEL-94-TR-8 29

S S
e ‘.'A'A:i(éqf?m)bﬁg}‘

TS ST TR T 3
8 N TR R

*é‘:‘:{w‘iﬂ%ﬁ-&

IS
Jiopees

G.2 Data Base Surrogate Specification

Surrogate Name:
Data_Base

Description:

Provides an interface between a physical external data base and the other subsystems com-
prising the Convoy Planner prototype. This surrogate manages the creation, deletion, reading,
and updating of database items. The prototype implementation uses stored files, rather than
an actual database management system.

Type (check one or both) Connection to VO Device
Monitor Control Device Name Data Buffer Size
(bytes)
Yes Yes Ada file 11O N/A

Imports: (for control surrogates)

Name Type
Vehicle Vehicle_Types.Vehicle_Type
Combination Vehicle_Types.Vehicle_Combination
Map_Name String
Vertex Map_Types.Vertex_Type
Arc Map_Types.Arc_Type
Logical_ld_Value Natural
Convoy_Name Data_Base_Types.Convoy_Element_Type
Convoy_Parameters Data__Base_Types.i_Convoy_Parameters_
ype

Exports: (for monitor surrogates)

Name Type
Records_In_File Natural
Model_id Vehicle_Types.Model_Type
Vehicle_Id Vehicle_Types.Specific_Vehicle_id
Vehicle Vehicle_Types.Vehicie_Type

Name Type
Combination Vehicle_Types.Vehicle_Combination
Convoy_Name String(1 .. DB_Types.Max_Name_Length)
Convoy_Part DB_Types.Convoy_Element_Type
Convoy_Data DB_Types.Convoy_Parameters_Type
Map_Name String(1 .. DB_Types.Max_Name_Length)
Vertex_Data Map_Types.Vertex_Type
Arc_Data Map_Types.Arc_Type
Logical_ld_Value Natural
Exceptions/Malfunctions:
Name Effect
Data_Base_Signatures.NOT_FOUND Opening of specified file abandoned.

~
o o A4 A 31 na At PR 35

I Yo

P R e AR

0 vy i)

AppendixH Movement Control Example Code

This appendix contains a large sample of code to illustrate the application of the processes
described in this document using a FODA domain model and the OCA as the architecture. The
executive, one subsystem (the Asset Manager) with its objects and supporting components,
and one surrogate (the Data_Base) with its Handler/IO packages are listed in the following
sections.

H.1 Executive

with System;

with Application_Signatures;
with User_Interface_Signatures;
with Data_Base_Signatures;
with Mapper_Signatures;

with Asset_Manager_Signatures;
with Convoy_Signatures;

with Convoy_Builder_Signatures;
with March_Table_Signatures;

with User_Interface_Controller;
with Data_Base_Controller;

with Mapper_Controller;

with Asset_Manager_Controller;
with Convoy_Builder Controller;
with March_Table_Controller;

procedure Executive is

-- Renamings of important packages

package APP renames Application_Signatures;
package UIS renames User_Interface_Signatures;
package DBS renames Data_Base_Signatures;
package MPS renames Mapper_Signatures;
package AMS renames Asset_Manager_Signatures;
package CS renames Convoy_Signatures;

package CBS renames Convoy_Builder_Signatures;
package MTS renames March_Table_Signatures;

package UIC renames User_Interface_Controller;
package DBC renames Data_Base_Controller;
package MPC renames Mapper_Controller;

package AMC renames Asset_Manager_Controller;
package CBC reaames Convoy_Builder_Controller;
package MTC renames March_Table_Controller;

functioma “="(L,
function *="(L,
function *="(L,
functioma *="(L,
function “=7(L,
function *=°(L,

: in APP.Status_Type) return Boolean renames APP."=";
: im AMS.Status_Type) rxreturn Boolean renames AMS."=";
: in DBS.Status_Type) return Boolean renames DBS.*=";
in CBS.Status_Type) return Boolean renames CBS."=";
: in MPS.Status_Type) returam Boolean renames MPS."=";
: in MTS.Status_Type) return Boolean xenames MTS."=";

WA

Program_State : APP.Status_Type := APP.INITIALIZE;

CMU/SE-94-TR-8 108

User_Selection : UIS.Status_Type;
begin - Executive

-- Initialization code to read Vehicle files and the Convoy and Map lists.
DBC.Application_To_Device(ENTITY => DBS.MODEL_LIST,
STATUS => Program_State);
UIC.Application_To_Device(DBS.MODEL_ID);
loop
DBC.Device_To_Application{ DBS.MODEL);
exit when DBC.Signal = DBS.END_OF_FILE;
DBC.Device_To_Application{(DBS.MODEL_ID);
AMC.Construct (ENTITY => AMS.MODEL,
SURROGATE => APP.DATA_BASE);
UIC.Application_To_Device(DBS.MODEL_I1D);
end loop;

DBC.Application_To_Device{(ENTITY => DBS.VEHICLE_LIST,
STATUS => Program_State);

UIC.Application_To_Device(DBS.VEHICLE_ID);

loop
DBC.Device_To_Application(DBS.SPECIFIC_VEHICLE);
exit when DBC.Signal = DBS.END_OF_FILE;
DBC.Device_To_Application(DBS.VEHICLE_ID);

-- AMC.Construct(ENTITY => AMS.SPECIFIC_VEHICLE,

-- SURROGATE => APP.DATA_BASE);
UIC.Application_To_Device(DBS.VEHICLE_ID);

end loop:

DBC.Application_To_Device(ENTITY => DBS.COMBINATION_LIST,
STATUS => Program_State };
UIC.Application_To_Device(DBS.COMBINATION_ID);
loop
DBC.Device_To_Application(DBS.VEHICLE_COMBINATION):;
exit when DBC.Signal = DBS.END_OF_FILE;
DBC.Device_To_Application(DBS.COMBINATION_ID):;
~- AMC.Construct(ENTITY => AMS.VEHICLE_COMBINATION,
SURROGATE => APP.DATA_BASE);
UIC Application_To_Device(DBS.COMBINATION_ID);
end loop:;

DBC.Application_To_Device(ENTITY => DBS.MAP_LIST,
STATUS => Program_State);
UIC.Application_To_Device(DBS.MAP_NAME);
. loop
4 DBC.Device_To_Application(DBS.MAP_NAME);
exit when DBC.Signal = DBS.END_OF_FILE;
UIC.Application_To_Device{ DBS.MAP_NAME);
ond loop;

DBC.Application_To_Device(ENTITY => DBS.CONVOY_LIST,
: STATUS => Program_State);
! I;Ic.hpplication_ro_bevice(DBS . CONVOY_NAME) ;
oop
; DBC.Device_To_Application(DBS.CONVOY_NAME);
}_‘ exit whea DBC.Signal = DBS.END_OF_PILE; :
UIC.Application_To_Device(DBS.CONVOY_NAME) ; P
! end loop; L

-- Initialization complete, give the user CONTROL!
Program_State := APP.STEADY;

while Program_State = APP.STEADY loop

User_Selection := UIC.Signal;
case User_Selection.SUBSYSTEM ip
when APP.USER_INTERFACE =>
case User_Selection.OPERATION is
when APP.DESTRUCT =>
Program _State := APP.FINALIZE; - Thisis QUIT!!!

} when others => null;
end case;

' when APP.DATA_BASE =>
case User_Selection.OPERATION is
when APP.CONSTRUCT => mull;

when APP.DESTRUCT =>
case User_sSelection.DATA_BASE_ENTITY is
when DBS.MAP =>

UIC.Device_To_Application(DBS.MAP_NAME);
DBC.Application_To_Device(DBS.MAP_NAME) ;

when DBS.CONVOY =>
UIC.Device _To_Application(DBS.CONVOY_NAME)
DBC.Application_To_Device(DBS.CONVOY_NAME)

. .

when others => null;
end case;

when APP.FETCH =>
case User_Selection.DATA_BASE_ENTITY is
when DBS.MAP =>
MPC.Destruct (MPS.MAP)
‘ UIC.Device_To_Application(DBS.MAP_NAME);
. DBC.Application_To_Device(ENTITY => DBS.MAP,
: STATUS => APP.INITIALIZE);

if DBC.SIGNAL = DBS.NORMAL then
s DBC.Device_To_Application(DBS.VERTEX);
UIC.Application_To_Device(DBS.VERTEX);
loop
DBC.Device_To_Application(DBS.VERTEX);
exit when DBC.Signal = DBS.END_OF_FILE;
UIC.Application_To_Device(DBS.VERTEX);
' MPC.Construct(ENTITY => MPS.VERTEX,
¢ SOURCE => APP.DATA_BASE);
end loop;

By

DBC.Device_To_Application{(DBS.ARC);
UIC.Application_To_Device(DBS.ARC);
loop
DBC.Device_To_Application(DBS.ARC);
exit when DBC.Signal = DBS.END_OF_FILE; e
UIC.Application_To_Device(DBS.ARC); Do
MPC.Construct(ENTITY => MPS.ARC, ®
SOURCE => APP.DATA_BASE);

is

ent loop:;

DBC.Device_To_Application(DBS.LOGICAL_ID . ;
UIC.Application_To_Device{ DBS.LOGICAL_ID);
DBC.Application_To_Device(ENTITY => DBS.MAP,
STATUS => APP.FINALIZE);
else
UIC.Application_To_Device((SUBSYSTEM =>
APP.DATA_BASE,
DATA_BASE_ERROR =>
{ ENTITY => DBS.MAP,
STATUS => DBS.NOT_FOUND)));
end 1if;

when DBS.CONVOY =>
CBC.Destruct(CBS.Convoy);
UIC.Device_To_Application(DBS.CONVOY_NAME);
DBC.Application_To_Device(ENTITY => DBS.CONVOY,
STATUS => APP.INITIALIZE);
DBC.Device_To_Application(DBS.ELEMENT);
UIC.Application_To_Device(DBS.ELEMENT);
loop
DBC.Device_To_Application(DBS.ELEMENT)
exit when DBC.Signal = DBS.END_OF_FILE;
UIC.Application_To_Device(DBS.ELEMENT);
CBC.Construct(CBS.CONVOY_PART);
ond loop:
DBC.Device_To_Application(DBS.PARAMETERS);
CBC.Construct{(CBS.CONVOY_PARAMETERS) ;
DBC.Application_To_Device(ENTITY => DBS.CONVOY,
STATUS => APP.FINALIZE);

when others => null;
end case;
end case;

when APP.CONVOY_BUILDER =>
case User_Selection.OPERATION is
when APP.CONSTRUCT =>
case User_Selection.CONVOY_BUILDER_ENTITY.ENTITY is
when CBS.SUBUNIT =>
UIC.Device_To_Application(CBS.SUBUNIT):
CBC.Construct(CBS.SUBUNIT):

when CBS.VEHICLE =>
UIC.Device_To_Application(CBS.VEHICLE);
case User_Selection.CONVOY_BUILDER_ENTITY.IMPORT

when AMS.MODEL =>
AMC.Fetch(ENTITY => AMS.MODEL,
AS_TYPE =>
AMS .VEHICLE_COMBINATION);

when AMS.SPECIFPIC_VEHICLE =>
AMC.FPetch(ENTITY => AMS.SPECIFIC_VEHICLE,
AS_TYPE =>
AMS .VEHICLE_COMBINATION) ;

when AMS.VEHICLE_COMBINATION =>

CMU/SEI-4-TR-8

AMC .Fetch(AMS.VEHICLE_COMBINATION) ;

when others => null;
end case;
CBC.Construct{ CBS.VEHICLE);

when CBS.SPEED =>

UIC.Device_To_Application{(CBS.SPEED);
CBC.Construct(CBS.SPEED);

when CBS.GAP_DISTANCE =>

UIC.Device_To_Application(CBS.GAP_DISTANCE);
CBC.Construct(CBS.GAP_DISTANCE);

when CBS.GAP_DISTANCES =>

UIC.Device_To_Application(CBS.GAP_DISTANCES) ;
CBC.Construct(CBS.GAP_DISTANCES);

when CBS.GAP_MULTIPLIER =>

UIC.Device_To_Application(CBS.GAP_MULTIPLIER) ;
CBC.Construct(CBS.GAP_MULTIPLIER);

when CBS.GAP_MULTIPLIERS =>

UIC.DeViCe_To_Application(CBS.GAP_MULTIPLIERS);
CBC.Construct(CBS.GAP_MULTIPLIERS):

when CBS.CONVOY =>

case User_Selection.CONVOY_BUILDER_ENTITY .FEATURE
is

when CS.FIXED =>
CBC.Construct(CBS.FIXED):;
when CS.GOVERNED =>

CBC.Construct(CBS.GOVERNED);
end case;

when others => null;
end case;

when APP.DESTRUCT =>

case User_Selection.CONVOY_BUILDER_ENTITY.ENTITY is
when CBS.SUBUNIT =>

UIC.Device_To_Application(CBS.SUBUNIT);
CBC.Destruct(CBS.SUBUNIT);

when CBS.VEHICLE =>

UIC.Device_To_Application(CBS.VEHICLE);
CBC.Destruct(CBS.VEHICLE);

whan CBS.CONVOY =>
CBC.Destruct(CBS.CONVOY);
DBC.Application_To_Device(ENTITY => DBS.CONVOY,
STATUS => APP.FINALIZE);

when others => null;
ond case;

when APP.FETCH =>

case User_Selection.CONVOY_BUILDER_ENTITY.ENTITY is
whea CBS.GAP_KIND =>

CBC.Fetch(CBS.GAP_KIND);
UIC.Application_To_Device(CBS.GAP_KIND);

when CRS.SPEED =>
CBC.Fetch(CBS.SPEED);
UIC.Application_To_Device(CBS.SPEED);

when CBS.GAP_DISTANCE =>
CBC.Fetch(CBS.GAP_DISTANCE);
UIC.Application_To_Device(CBS.GAP_DISTANCE);

when CBS.GAP_DISTANCES =>
CBC.Fetch(CBS.GAP_DISTANCES)
UIC.Application_To_Device(CBS.GAP_DISTANCES) ;

when CBS.GAP_MULTIPLIER =>
CBC.Fetch(CBS.GAP_MULTIPLIER);
UIC.Application_To_Device(CBS.GAP_MULTIPLIER) ;

when CBS.GAP_MULTIPLIERS =>
CBC.Fetch{ CBS.GAP_MULTIPLIERS);
UIC.Application_To_Device (CBS.GAP_MULTIPLIERS) ;

when CBS,CONVOY =>
UIC.Device_To_Application(DBS.CONVOY_NAME);
DBC.Application_To_Device(ENTITY => DBS.CONVOY,
STATUS => APP.STEADY);
loop
CBC.Fetch{(CBS.CONVOY_PART);
DBC.Application_To_Device(DBS.ELEMENT);
exit when CBC.Signal = CBS.COMPLETE;
end loop;
CBC.Fetch(CBS.CONVOY_PARAMETERS);
DBC.Application_To_Device(DES.PARAMETERS);
DBC.Application_To_Device(EN{ITY => DBS.CONVOY,
STATUS => APP.FINALIZE);

when others => null;
ond case;
end case:

when APP.ASSET_MANAGER =>
case User_Selection.OPERATION is
when APP.CONSTRUCT =>
case User_ _Selection.ASSET MANAGER_ENTITY is
when AMS.MODEL =>
UIC.Device_To_Application(AMS.MODEL);
AMC.Construct{ ENTITY => AMS.MODEL,
SURROGATE => APP.USER_INTERFACE);
DBC.Application_To_Device(DBS.MODEL);

vhen others => null;
end case;

when APP.DESTRUCT =>
case User_Selection.ASSET_MANAGER_ENTITY is
when AMS.MODEL =>
UIC.Device_To_Application(ENTITY => AMS.MODEL,
KIND => UIC.KEY);

108

CMU/SEI-94-TR-8

AMC .Destruct(AMS.MODEL):
DBC.Application_To_Device(DBS.MODEL_ID);

when others => null;
end case;

when APP.FPETCH =>
case User_Selection.ASSET_MANAGER_ENTITY is
when AMS.MODEL =>
UIC.Device_To_Application(ENTITY => AMS.MODEL,
KIND => UIC.KEY):
AMC.Fetch(AMS.MODEL):;
UIC.Application_To_Device(AMS.MODEL);

when others => null;
end case;
end case;

when APP . MAPPER =>
case User_Selection.OPERATION is
when APP.CONSTRUCT =>
case User_Selection.MAPPER_ENTITY.ENTITY is
when MPS.VERTEX =>
UIC.Device_To_Application(MPS.VERTEX)
MPC.Construct(ENTITY => MPS.VERTEX,
SOURCE => APP.USER_INTERFACE);

when MPS.ARC =>
UIC.Device_To_Application{ MPS.ARC);
MPC .Constxruct{ ENTITY => MPS.ARC,
SOURCE => APP.USER_INTERFACE);

when MPS.CONSTRAINTS =>
CBC.Fetch(CBS.CONSTRAINTS);
MPC.Construct (MPS.CONSTRAINTS);
MPC.Fetch(MPS,CONSTRAINTS);
UIC.Application _To_Device(MPS.ROUTE);

: when others => null;
- end case;

£ when APP.DESTRUCT =>

: case User_Selection.MAPPER_ENTITY.ENTITY is

when MPS.VERTEX =>

P UIC.Device_To_Application(ENTITY => MPS.VERTEX,

s KIND => UIC.KEY):
3 MPC.Destruct (MPS.VERTEX);

when MPS.ARC =>
UIC.Device_To_Application{ ENTITY => MPS.ARC,
; KIND => UIC.KEY);
3 MPC.Destruct(MPS.ARC);

wbhen MPS.CONSTRAINTS =>
MPC.Destruct (MPS.CONSTRAINTS);

when MPS.MAP =>
MPC.Destruct (MPS.Map);
DBC.Application_To_Device(ENTITY => DBS.MAP,

CMU/SE-94-TRH-8

« .

e "'T-.T" ._...._.x,.,_.‘...-.—?— - 4_ . RS

:' i R e d g age
vk T - WY o8

a

ax :
ot o

e BT LGt e 2R e g

STATUS => APP.FINALIZE);

when others => null;
end case;

when APP.FETCH =>
case User_Selection.MAPPER_ENTITY.ENTITY is
when MPS.ARC =>
UIC.Device_To_Application(ENTITY => MPS.ARC,
KIND => UIC.KEY);
MPC.Fetch{(MPS.ARC };
UIC.Application_To_Device(MPS.ARC);

when MPS.ROUTE =>
UIC.Device_To_Application{ MPS.ROUTE);
CBC.Fetch(CBS.CONSTRAINTS);
case User_Selection.MAPPER_ENTITY.FEATURE is
when MPS.BEST =>
MPC .Fetch(MPS.BEST)
when MPS.SATISFICE =>
null;
end case:
UIC.Application_To_Device(MPS.Route);

when MPS.MAP =>
UIC.Device_To_Application(DBS.MAP_NAME) ;
DBC.Application_To_Device(ENTITY => DBS.MAP,
STATUS => APP.STEADY);

MPC.Construct(MPS.VERTICES });
loop
MPC.Fetch(MPS.VERTICES);
exit when MPC.Signal = MPS.COMPLETE;
DBC.Application_To_Device(DBS.VERTEX):;
end loop:;

MPC.Construct (MPS.ARCS);
loop
MPC.Fetch(MPS.ARCS):
exit when MPC.Signal = MPS.COMPLETE;
DBC.Application_To_Device(DBS.ARC);
end loop;

UIC.Device_To_Application(DBS.LOGICAL_ID);

DBC.Application_To_Device(DBS.LOGICAL_ID);

DBC.Application_To_Device(ENTITY => DBS.MAP,
STATUS => APP.FINALIZE);

when others => null;
end case;
end case;

when APP.MARCH_TABLE =>
case User_Selection.OPERATION is
when APP.CONSTRUCT => null;
when APP.DESTRUCT => aull;

when APP.FETCH =>

RN

110 CMU/SEL-94-TR-8

ATy W

Y e e VN

case User_Selection.MARCH _TABLE_ENTITY.ENTITY is
when MTS.MARCH_TABLE =>
UIC.Device_To_Application(MTS.MARCH_TABLE);
CBC.Fetch(CBS.LENGTH);
CBC.Fetch(CBS.SPEED);
MTC.Destruct (MTS.MARCH_TABLE);
case User_Selection.MARCH_TABLE_ENTITY. FEATURE
is
when MTS.FORWARD =>
MTC.Construct(ENTITY => MTS.MARCH_TABLE,
FEATURE => MTS.FORWARD);

when MTS.BACKWARD =>
MTC.Construct(ENTITY => MTS.MARCH_TABLE,
FZATURE => MTS.BACKWARD);

end case;
if MTC.Signal = MTS.NORMAL then
MTC.Fetch(MTS.MARCH TABLE)
UIC.Application_To_Device (MTS.MARCH_TABLE) ;
else
UIC.Application_To_Device(
(SUBSYSTEM => APP.MARCH_TARBLE,
MARCH_TABLE_ERROR =>
(ENTITY => MTS.MARCH_TABLE,
STATUS => MTS.INVALID)));
end if;

when others => null;
end case:
end case;
end case;
end loop;

-- Finalization code to close some List files opened during initialization.
DBC.Application_To_Device(ENTITY DBS .MODEL_LIST,

STATUS => Program_State);
DBC.Application_To_Device(ENTITY => DBS.VEHICLE_LIST,

STATUS => Program_State);
DBC.Application_To_Device(ENTITY => DBS.COMBINATION_LIST,

STATUS => Program_State);
DBC.Application_To_Device(ENTITY => DBS.MAP_LIST,

STATUS => Program_State);
DBC.Application_To_Device(ENTITY <> DBS.CONVOY_LIST,

STATUS => Program_State);

end Executive;

) -

H.2 Application_Signatures

package Application_Signatures is

type Application_Aggregate is (USER_INTERFACE, DATA_BASE,
CONVOY_BUILDER, MARCH_TABLE, MAPPER, ASSET_MANAGER);

subtype Surrogate_Type is Application_Aggregate
range USER_INTERFACE .. DATA_BASE;

subtype Subsystem_Type 18 Application_Aggregate
range CONVOY_BUILDER .. ASSET _MANAGER;

type Status_Type is (INITIALIZE, STEADY, FINALIZE);
type Operation_Type is (CONSTRUCT, DESTRUCT, FETCH);

end Application_Signatures;

112

CMU/SE!-94-TR-8

)
]

H.3 Asset Manager Subsystem

H.3.1 Asset Manager Controller (Specification)

with Application_Signatures;

with Asset_Manager_Signatures;

package Asset_Manager_Controller is
package AMS renames Asset_Manager_Signatures;
package APP renames Application_Signatures;
procedure Construct(ENTITY : in AMS.Entity_Type;

SURROGATE : im APP.Surrogate_Type);

procedure Destruct{(ENTITY : in AMS.Entity Type);
procedure Fetch(ENTITY : in AMS.Entity_Type);

procedure Fetch(ENTITY : im AMS.Entity_Type:
AS_TYPE : in AMS.Entity Type }:

function Signal returm AMS.Status_Type:;

end Asset_Manager_Controller;

b e N R e

H.3.2 Asset Manager Controller (Body)

with Asset_Manager_Imports;

with Asset_Manager_ Exports;

with Vehicle_Types:

with Vehicle_Manager;

with Default;

package body Asset_Manager_Controller is

-- renaming declaration for package abbreviations

package AMI renames Asset_Manager_Imports;
package AME renames Asset_Manager_EXports;
package VM renames Vehicle_Manager;
package VT renames Vehicle_Types;

use Asset_Manager_Signatures;

. 22822222 RE2 R AR AR RR R R Rttt Rl R AR R AR S

-- local variables and subprograms declared here

INTERNAL_STATE : AMS.Status_Type;

-- End declarations and code for internal subprograms
s R XX 22X X2 EEZEE AR SRR ERRRRRERR RSN RRX2 RS RaRRRRRRSRRRRRRR R R S

-- Begin code for subprograms declared in package specification

procedure Construct(ENTITY : in AMS.Entity_Type;
SURROGATE : im APP.Surrogate_Type) is
begin
case ENTITY is
when MODEL =>
VM.Construct (MODEL_OR_VEHICLE => AMI.Vehicle(SURROGATE).
KIND_OF_VEHICLE => VT.GENERAL):
AME.Vehicle := AMI.Vehicle{ SURROGATE):

when SPECIFIC_VEHICLE =>
VM.Construct (MODEL_OR_VEHICLE => AMI.Vehicle(SURROGATE),
KIND_OF_VEHICLE => VT.SPECIFIC);
AME.Vehicle := AMI.Vehicle(SURROGATE);

when VEHICLE_COMBINATION =>
VM.Construct (AMI.Combination{ SURROGATE)):
AME.Vehicle_Combination := AMI.Combination{ SURROGATE);

when others => null;
end case;
end Construct:;

S A A AL A A ARl AR AR RSS2 22222222222 22X 2222222222222 222X 23 21

procedure Destruct(ENTITY : in AMS.Entity _Type) is
begin
case ENTITY is
when MODEL =>
VM.Destruct (AMI.Model_Or_Combo_ID);

114 CMU/SE)-84-TR-8

> s N

when MODELS =>
VM.Destruct(VT.General);

when SPECIFIC_VEHICLE =>
VM.Destruct(AMI.Vehicle_1ID);

when VEHICLES =>
VM.Destruct(VT.Specific);

when VEHICLE_COMBINATION =>
VM.Destruct{ AMI.Model_Or_Combo_ID);

when COMBINATIONS =>
VM.Destruct;

end case;
end Destruct;

—..'.*i****tttti**tt**t**tt***t**i*t*******t**********t***********ttﬁt*****t*

procedure Fetch(ENTITY : in AMS.Entity Type) is
Done : Boolean;
begin
case ENTITY is
when MODEL =>
VM.Fetch(MODEL_ID => AMI .Model_Or_Combo_ID,
MODEL => AME.Vehicle);

when MODELS =>
VM.Fetch(KIND => VT.GENERAL,

VEHICLE
LAST =>
if Done then
INTERNAL_STATE
else

INTERNAL_STATE :

end if;

=> AME.Vehicle,
Done) ;

1= COMPLETE;

INCOMPLETE;

when SPECIFIC_VEHICLE =>
VM.Fetch(VEHICLE_ID => AMI.Vehicle_ID,

VEHICLE

when VEHICLES =>
VM.Fetch(KIND =>
VEHICLE
LAST =>
if Done them
INTERNAL_STATE
else

INTERNAL_STATE
ond if;

=> AME.Vehicle);

VT.SPECIFIC,

=> AME.Vehicle,
Done);

:= COMPLETE;

:= INCOMPLETE;

when VEHICLE_COMBINATION =>
VM.Fetch(COMBINATION_ID => AMI .Model_Or_Combo_1D,
COMBINATION => AME.Vehicle_Combination);

when COMBINATIONS =>
VM.Fetch(COMBINATION => AME.Vehicle_Combination,

CMU/SEL94-TR-8 115

LAST => Done);

if Done then
INTERNAL_STATE := COMPLETE;

else
INTERNAL_STATE := INCOMPLETE;

end if;

when others => null;
end case;
end Fetch;

ey 2 2222222222222 22222 X222 RS slaRiRiilsitRsR2RX X222 X}

procedure Fetch(ENTITY : im AMS.Entity Type;
AS_TYPE : in AMS.Entity_Type) is
Temp_Vehicle : VT.Vehicle_Type;
Temp_Config : VT.Configured_vehicle;
Temp_Combo : VT.Vehicle_Combination(VT.Single);
begin
case ENTITY is
when MODEL =>
case AS_TYPE is
when VEHICLE COMBINATION =>
VM.Fetch(MODEL_ID => AMI.Model_Or_Combo_ID,
MODEL => Temp_Vehicle };
Temp_Combo.Total := Temp_Vehicle.Properties;
Temp_Config.Vehicle := Temp_Vehicle;
Temp_Combo.Prime := Temp_Config;
AME.Vehicle_Combination := Temp_Combo;

when others => INTERNAL_STATE := INVALID;
end case;

when SPECIFIC_VEHICLE =>
case AS_TYPE is
when VEHICLE_COMBINATION =>
VM.Fetch(MODEL_ID => AMI.Mocdel_Or_Combo_ID,
MODEL => Temp_Vehicle);
Temp_Combo.Total := Temp_Vehicle.Properties;
Temp_Config.Vehicle := Temp_Vehicle;
Temp_Combo.Prime := Temp_Config;
AME.Vehicle_Combination := Temp_Combo;

when others => INTERNAL_STATE := INVALID;
ond case;

when others => INTERNAL_STATE := INVALID;
end case;
end Fetch;

P A A AR AL S AL 22 A2 A2 X 2z Yyl I S P R R R R R R

function Signal return AMS.Status_Type is
Status : AMS.Status_Type := INTERNAL_STATE;
begin)
INTERNAL_STATE := NORMAL; e
Teturn Status;
end Signal;

_-ﬁ*tt*.i******ttﬁ*ﬁttﬁ*tﬁ*****itit*tittttt*ﬁt*ttttti’ti**tii‘.'.*.t.ttiitit
-- Package initialization code!
begin
INTERNAL_STATE := INITIALIZED;
end Asset_Manager_Controller;

.

CMU/SEL-4-TR-8 "7

e e e A P DT B

H.33 Asset Manager Signatures

package Asset_Manager_Signatures is

type Entity Type is (MODEL, MODELS, SPECIFIC_VEHICLE, VEHICLES,
VEHICLE_COMBINATION, COMBINATIONS) ;

type Status_Type is (INITIALIZED, INCOMPLETE, COMPLETE, INVALID, NORMAL);
type Error_Type is recorxd

STATUS : Status_Type;

ENTITY : Entity_Type:
end record;

end Asset_Manager_Signatures;

H.3.4 Asset Manager Imports (Specification)

with Vehicle_Types;

with Application_Signatures;

package Asset_Manager_Imports is
package APP renames Application_Signatures;
package VT renames Vehicle_Types;
function Model Or_Combo_ID return VT.Model_Type;

function Vehicle_ID retura VT.Specific_vVehicle_Id;

function Vehicle(SOURCE : in APP.Surrogate_Type)
return VT.Vehicle_Type;

function Combination(SOURCE : in APP.Surrogate_Type)
return VT.Vehicle_Combination;

end Asset_Manager_Imports;

118

H.3.5 Asset Manager imports (Body)

with User_Interface_Exports;
with Data_Base_Exports;
package body Asset_Manager_Imports is

package UIE renames User_Interface_Exports;
package DBE renames Data_Base_Exports;

function Model_ Or_Combo_ID returm VT.Model_Type is
begin

return UIE.Model_ID;
end Model_Or_Combo_ID;

function Vehicle_ID returm VT.Specific_Vehicle_Id is
begin

return UIE.Specific_Vehicle_Id;
end Vehicle_ID;

function Vehicle(SOURCE : im APP.Surrogate_Type)
return VT.Vehicle_Type is
begin
case SOURCE is
when APP.USER_INTERFACE =>
return UIE.Vehicle;

when APP.DATA_BASE =>
return DBE.Vehicle;
end case;
end Vehicle;

function Combination(SOURCE : im APP.Surrogate_Type)
return VT.Vehicle_Combination is
begin
case SOURCE is
when APP.USER_INTERFACE =>
raise Program_ Error;
-- return UIE.Combination;
when APP.DATA_BASE =>
return DBE.Combination;
end case;
end Combination;

end Asset_Manager_Imports;

H3.6 Asset Manager Exports

with Vehicle_Types;
package Asset Manager_Exports is

Vehicle : Vehicle_Types.Vehicle_Type; i
Vehicle_Combination : Vehicle_Types.vVehicle_Combination; ¢

oend Asset_Manager_Exports;

CMVSE-94-TR-8 119

H.3.7 Vehicle Manager (Specification)

with Vehicle_Types;
package Vehicle_Manager is

package VT renames Vehicle_Types;

procedure Construct(MODEL_OR_VEHICLE : im VT.Vehicle_Type;
KIND_OF_VEHICLE : im VT.Vehicle_State

);

procedure Construct{ COMBINATION : im VT.Vehicle_Combination);

procedure Destruct(MODEL_OR_COMBO_ID : imn VT.Model_Type);

procedure Destruct(VEHICLE WITH_ID : inm VT.Specific_Vehicle_ID);

procedure Destruct(KIND : im VT.Vehicle_State);
-- Destroys entire contents of list specified by Kind

procedure Destruct;

-- Destroys entire contents of Combinations data

procedure Fetch(MODEL_ID : in VT.Model_Type;
MODEL : out VT.Vehicle_Type);

procedure Fetch(VEHICLE_ID : im VT.Specific_Vehicle_ID;
VEHICLE : out VT.Vehicle_Type);

procedure Fetch(COMBINATION_ID : in VT.Model_Type;
COMBINATION : out VT.Vehicle_Combination

procedure Fetch(KIND : im VT.Vehicle_State;
VEHICLE : out VT.Vehicle_Type;
LAST : out Boolean);

procedure Fetch(COMBINATION : out VT.Vehicle_Combination;
LAST : out Boolean)

Not_Found : exception; -- raised if Fetch with an ID finds

end Vehicle_Manager;

No Match

TR

H.3.8 Vehicle Manager (Body)

with Ring_Sequential_Unbounded_Managed_ Iterator;
with Default;
package body Vehicle_Manager is

package Vehicle_Storage is new Ring_Sequential_Unbounded_Managed_Iterator
(ITEM => VT.Vehicle_Type);

package Combo_Storage is new Ring_Sequential_Unbounded_Managed _Iterator
(ITEM => VT.Vehicle_Combination);

function *="(L, R : in VT.Model_Type) return Boolean renames VT."=";
function "="(L, R : im VP.Vehicle_State } return Boolean renames VT.*=";
function *="(L, R : imn VT.Specific_Vehicle_Id) returm Boolean

renames VT."=";

s 22222 L AR S22t R R R R 22X R R R RS RR RS R X L3

-- local variables and subprograms declared here

Models : Vehicle_Storage.Ring:;
Vehicles : Vehicle_Storage.Ring;
Combinations : Combo_Storage.Ring;

Fetch_Active : Boolean :=False;

e A2 A AR AR AR AR Sl X2 R X2 R R R R AR ELER SRR

procedure Find_Model(MODEL_ID : in VT.Model_Type;
FOUND : out Boolean) is
begin
FOUND := False;
Vehicle_Storage.Mark(Models);
loop
if vehicle_Storage.Top_Of(Models).Properties.Model = MODEL_ID

Vehicle_Storage.Mark(Models);
FOUND := True;

else
Vehicle_Storage.Rotate(The_Ring => Models,
In_The_Direction => Vehicle_Storage.Forward);

end if;

exit when Vehicle_Storage.At_Mark(Models);

end loop;
ond Find_Model;

e R R AR R R RN AN R R AR A R AR AR R AR AR AR TR RN AR AR IR R AR AR AR TR AR R h R

procedure Find_Vehicle(VEHICLE_ID : im VT.Specific_Vehicle_Id;
FOUND : out Boolean) is
begin

FOUND := False;
Vehicle_Storage .Mark(Vehicles);
loop
if vehicle_sStorage.Top_Of (Vehicles) .Vehicle_ld = VEHICLE_ID thea
Vehicle_Storage.Mark(Vehicles);
FOUND := True;

CMAVSE-94-TR-8 21

else
Vehicle_Storage.Rotate{ The_Ring => Vehicles,
In_The_Direction => Vehicle_Storage.Forward);

end if;
exit when Vehicle_Storage.At_Mark(Vehicles);
end loop;
end Find_vVehicle:;

pnn 22222222222 X222 2222 X222 22X R R it AR il X2 X222 XS RRXR R R~ o3

procedure Find Combo(COMBO_ID : im VT.Model_Type;
FOUND : out Boolean) is

begin

FOUND := Palse;

Combo_Storage.Mark(Combinations);

locp
if Combo_Storage.Top_Of(Combinations).Total .Model = COMBO_ID then

Combo_Storage.Mark(Combinations);
FQUND := True;

else
Combo_Storage.Rotate(The_Ring => Combinations,
In_The_Direction => Combo_Storage.Forward);

end if;
exit when Combo_Storage.At_Mark(Combinations);

end loop:;
end Find_Combo;

-- End declarations and code for internal subprograms

LA R AR RA SRS R R R R s s s SR Rl R R R s X R s Ry e R R R R X

-- Begin code for subprograms declared in package specification

procedure Construct(MODEL_OR_VEHICLE : im VT.Vehicle_Type;
KIND_OF_VEHICLE : im VT.Vehicle_State) is
0ld_value : Boolean := False;
begin
case KIND_OF_VEHICLE is
when VT.GENERAL =>
if not Vehicle_Storage.Is_Empty(Models) them -- look for OLD

version
Find_Model (MODEL_ID => MODEL_OR_VEHICLE.Properties.Model,
FOUND => 0ld_value);
if 0l1d_value then -- Remove OLD version before Inserting NEW
Vehicle_Storage.Rotate_To_Mark(Models);
Vehicle_Storage.Pop(Models);
end if;
end if:;
Vehicle_Storage.Insert(The_Item => MODEL_OR_VEHICLE,
In_The_Ring => Models);
when VT.SPECIFIC =>
if not Vehicle_Storage.Is_Empty(Vehicles) them -- look for OLD
data

Find_Vehicle(VEHICLE_ID => MODEL_OR_VEHICLE.Vehicle_Id,
FOUND => 0ld_value);
if 01d_value them -- Remove OLD version before Inserting NEW
Vehicle_Storage.Rotate_To_Mark(Vehicles);
Vehicle_Storage.Pop(Vehicles);
end if;

end if;
Vehicle_Storage.Insert(The_Item => MODEL_OR_VEHICLE,

In_The_Ring => Vehicles);
end case;

end Construct;

PR T YT YT T YIS IZE 2SR S AR RS SRR AR RRSR R RR R A d R R Rt aR2s R R

procedure Construct(COMBINATION : im VT.Vehicle_Combination) is
0l1d_value : Boolean := False;
begin

if not Combo_Storage.Is_Empty(Combinations) them -- look for OLD
version

Find_Combo(COMBO_ID => COMBINATION.Total.Model,

FOUND => 0l1d_value);

if 0ld_value then -- Remove OLD version before Inserting NEW
Combo_Storage.Rotate_To_Mark(Combinations);

Combo_Storage.Pop(Combinations);
end if;

end if;
Combo_Storage.Insert(The_Item => COMBINATION,

In_The_Ring => Combinations);
end Construct;

PR 2222222222222 222222222 sR sttt AR RRt2RiRRtaRR Rl R

procedure Destruct{(MODEL_OR_COMBO_ID : in VT.Model_Type) is
Id_Found : Boolean := False:;

begin
if MODEL_OR_COMBO_ID(9) = ‘*

* then -- This is a MODEL
Find_Model (MODEL_ID => MODEL_OR_COMBO_ID,

FOUND => I1d_Found);

if I4d_Found then -- Remove
Vehicle_Storage.Rotate_To_Mark(Models);
Vehicle_Storage.Pop(Models);

end if;

else ~- This MUST be a COMBINATION
Find_Combo(COMBO_ID => MODEL_OR_COMBO_ID,
FOUND => Id_Found);

i€ Id_Found thea -- Remove

Combo_Storage.Rotate_To_Mark(Combinations);

Combo_Storage.Pop(Combinations);
end if;

end if;
end Destruct:

e LS A AR AR 2SRl R dd s il SRR R R RIS ER RIS R R Y]

procedure Destruct(VEHICLE_WITH_ID : im VT.Specific_Vehicle_ID) is
Id_Found : Boolean := False;

Find Vehicle(VEHICLE_ID => VEHICLE_WITH_ID,
FOUND => Id_Found);
i£ IA_PFound then -- Remove
Vehicle_Storage.Rotate_To_Mark(Vehicles);

Vehicle_Storage.Pop(Vehicles);
ond if;

end Destruct;

CML/SEL-94-TR-8

_..*ii'.*ﬁ*i*i'tiﬁtitt*ti*ttt*ttt*t***tii*i**it'*ttitti*tttittti*tiiit*iti*ti

procedure Destruct(KIND : im VT.Vehicle_State) is
begin
case KIND is
when VT.GENERAL =>
vehicle_Storage.Clear(Models);
when VT.SPECIFIC =>
Vehicle_Storage.Clear(Vehicles);
end case;
end Destruct;

e KRR AR R R AR R R R AR R R R AR AR AR AR RN A AR N A RN R AN A AR AR AR kAR kAR A AT A AR AR R R Ao k&

procedure Destruct is
begin

Combo_Storage.Clear(Combinations);
end Destruct;

e P AR RN AR AR R R ARRARN R A RRAARARRRRR R AR R A A AR AA R AR A AN AR A A A AR AL AT AANAANALT AR A A RN

procedure Fetch(MODEL_ID : im VT.Model Type:;
MODEL : out VT.Vehicle_Type) is
Id_Found : Boolean := False;
begin
if not Vehicle_Storage.Is_Empty(Models) then
Find_Model (MODEL_ID => MODEL_ID,
FOUND => Id_Found);
if Id_Found then
Vehicle_Storage.Rotate_To_Mark(Models);
MODEL := Vehicle_Storage.Top_Of(Models };
else
MODEL := Default.General_Vehicle;
MODEL.Properties.Model := MODEL_ID:;
end if;
else
MODEL := Default.General Vehicle;
MODEL.Properties.Model := MODEL_ID;
end if;
" end Fetch;

et 222222 RS2SRSS AR RS R R 2222222222 st iRl aX 22t]

procedure Fetch(VEHICLE_ID : im VT.Specific_Vehicle_ID;
VEHICLE : out VT.Vehicle_Type) is
Id_Found : Boolean := False;
begin
if mot Vehicle_Storage.ls_Empty(Vehicles) then
Find_vVehicle(VEHICLE_ID => VEHICLE ID,
FOUND => I4_Found);
if I4_Found themn
Vehicle_Storage.Rotate_To_Mark(Vehicles);
VEHICLE := Vehicle_Storage.Top_Of (Vehicles);
elae
raise Not_Found;
end if;
slse
zraise Not_Found;

124

end 1if;
end Fetch;

P YT XIZ22 XSRS AR SRR RS R R AR RS R Rl Rl R R R R R R D)

procedure Fetch{ COMBINATION_ID : iam VT.Model_Type:
COMBINATION : out VT.Vehicle_Combination) is
Id_Found : Boolean := False;
begin
if not Combo_Storage.Is_Empty(Combinations) then
Find_Combo(COMBO_ID => COMBINATION_ID,
FOUND => Id_Found);
if Id_Found then -- Remove OLD version before Inserting NEW
Combo_Storage.Rotate_To_Mark(Combinations);
COMBINATION := Combo_Storage.Top_Of(Combinations);

else
raise Not_Found;
end if;
else
ralse Not_Found;
end if;
end Fetch;

s 22222222 AR RS R R Rl a2 22 XAl X R R S

procedure Fetch(KIND : im VT.Vehicle_State;
VEHICLE : out VT.Vehicle_Type:
LAST : out Boolean) is
begin
case KIND is
when VT.GENERAL =>
if not Fetch_Active then
if Vehicle_Storage.Is_Empty(Models) then
raise Not_Found;
end if;
Vehicle_Storage.Mark(Models); -- This will be the LAST one
done!
Fetch_Active := True;
end if;
Vehicle_Storage.Rotate(The_Ring => Models,
In_The Direction => Vehicle_Storage.Forward);
VEHICLE := Vehicle_Storage.Top_Of(Models);
if vehicle_Storage.At_Mark(Models) them -- At the LAST one?
Fetch_Active := False;
LAST := True;
else
LAST := False;
end if;

when VT.SPECIFIC =>
if not Fetch_Active then
if vVehicle_Storage.Is_Empty(Vehicles) then
raise Not_Found;
end if;
Vehicle_Storage.Mark(Vehicles);
Fetch_Active := True;
end if;
Vehicle_Storage.Rotate{ The_Ring => Vehicles,
In_The_Direction => Vehicle_Storage.Forward);

——

CMU/SEL-94-TR-8

125

VEHICLE := Vehicle_Storage.Top_Of(Vehicles);
if vehicle_Storage.At_Mark{ Vehicles) them

Fetch_Active := False;
LAST := True;
else
LAST := False;
end if;
end case;

end Fetch;

_..*l'i**************t***ﬁ**i***‘k*********i*t********tt*******t***t**t*ttt*il

procedure Fetch(COMBINATION : out VT .Vehicle_Combination;
LAST : out Boolean) is
begin
if not Fetch_Active then
if Combo_Storage.Is_Empty(Combinations) then
raise Not_Found;

end if;
Combo_Storage.Mark(Combinations);
Fetch_Active := True;

end if;

Combo_Storage.Rotate(The_Ring => Combinations,

In_The_Direction => Combo_Storage .Forward) ;
CCMBINATION := Combo_Storage.Top_Of (Combinations)
if Combo_Storage.At_Mark(Combinations) then

Fetch_Active := False;
LAST := True;
else
LAST := False;
end if;
end Fetch;

_-*t****'h**********t*t**********************i******************************

end Vehicle _Manager;

; 126 CMU/SEI-84-TR-8

H.4 Data Base Surrogate

H.4.1 Data Base Controller (Specification)

with Data_Base_Signatures;
with Application_Signatures;
package Data_Base_Controller is

package APP renames Application_Signatures;

package DBS renames Data_Base_Signatures;

procedure Device_To_Application(ENTITY : in DBS.Entity Type);
procedurs Application_To_Device(ENTITY : in DBS.Entity_Type;

STATUS : in APP.Status_Type
:= APP.STEADY);

function Signal return DBS.Status_Type;

end Data_Base_Controller;

.

H.4.2 Data Base Controlier (Body)

with Vehicle_Types;

with Data_Base_Imports:;

with Data_Base_Exports;

with DB_Vehicle_IO;

with DB_Convoy_1l0;

with DB_Map_IO;

package body Data_Base_Controller is

package DBE renames Data_Base_ Exports;
package DBI renames Data_Base_Imports;

-- local variables and subprograms declared here

SIGNAL_STATE : DBS.Status_Type;
Count_Read : Boolean := False;

-- BEnd declarations and code for internal subprograms

(22 XX 222222 RS EESZ RSS2 2R 2 R R R 2 A2 R XA 28X X R R XX R 2R R 23

-- Begin code for subprograms declared in package specification

procedure Device_To_Application(ENTITY : in DBS.Entity Type) is
begin
case ENTITY is
when DBS.MAP_NAME =>
begin
DB_Map_IO.Get_Map_ From _List(DBE.Map_Name);
exception
when DB_Map_IO.End_Of_File =>
SIGNAL_STATE := DBS.END_OF_FILE;
end;

when DBS.VERTEX =>
begin
if not Count_Read then
DBE.Records_In_File := DB_Map_IO.Number_Of Vertices;

Count_Read := True;
else
DB_Map_IO.Get(DBE.Vertex_Data);
end if;
exception

when DB_Map_IO.End_Of_File =>
SIGNAL_STATE := DBS.END_OF_FILE;
Count_Read := False;

ond;

when DBS.ARC =>
begin
if not Count_Read then
DBE.Records_In_File := DB_Map_1IO.Number_Of_Arcs;

Count_Read := True;
else
DB_Map_10.Get(DBE.Arc_Data);
end if;
exception

when DB_Map_IXO.End_Of File =>
SIGNAL_STATE := DBS.END_OF_FILE;

128 CMU/SEL-94-TR-8

Count_Read := False;
end;

when DBS.LOGICAL_ID =>
DB_Map_IO.Get{(DBE.Logical_Id_value);

when DBS.MODEL =>
' begin
DB_Vehicle_I0.Get_Model(DBE.Vehicle);
exception
when DB_Vehicle_IO.End _Of_File =>
H SIGNAL_STATE := DBS.END OF_FILE;
end;

when DBS.MODEL_ID =>
DBE.Model_Id := DBE.Vehicle.Properties.Model;

when DBS.SPECIFIC_VEHICLE =>
begin
DB_Vehicle_I0.Get_Vehicle(DBE.Vehicle);
exception
when DB_Vehicle_IO.End_Of_File =>
SIGNAL_STATE := DBS.END_OF_FILE;
N end;

; when DBS.VEHICLE_ID =>
DBE.Model_1d := DBE.Vehicle.Properties.Model;
DBE.Vehicle_Id := DBE.Vehicle.Vehicle_Id;

when DBS.VEHICLE_COMBINATION =>
begin
DB_Vehicle_I0.Get_Combination(DBE.Combination);
. exception
! when DB_Vehicle_IO.End_Of_File =>
SIGNAL_STATE := DBS.END_OF_FILE;
end;

when DBS.COMBINATION_ID =>
DBE.Model_Id := DBE.Combination.Total.Model;

when DBS.CONVOY_NAME =>
begin
DB_Convoy_IO.Get_Convoy. From_List (DBE.Convoy_Name);
exception
when DB_Convoy_IO.End_Of_File =>
SIGNAL_STATE := DBS.END_OF_FILE;
i end;

when DBS.ELEMENT =>
begin
if not Count_Read then
DBE.Records_In_File := DB_Convoy_ IO.Number_Of_ Elements;
Count_Read := True;
else
s DB_Convoy_IO.Get(DBE.Convoy_Part);
; end if; ot
exception i
' when DB_Convoy_IO.End_Of_ Pile =>
SIGNAL_STATE := DBS.END_OF_FILE;

CMU/SEl-94-TR-8

Count_Read := False;

ond;

when DBS.PARAMETERS =>
DB_Convoy_I0.Get(DBE.Convoy Data);

when others => null;
end case;
end Device_To .ication;

s 222222222 222231 NAS A AZEEARALRERR2 2R 2222222222222 RR R 2R R R R R R R Y

procedure Application_To_Device(ENTITY : im DBS.Entity_Type;
STATUS : im APP.Status_Type
:= APP.STEADY) is
begin
case ENTITY is
when DBS.MAP_LIST =>
case STATUS is
when APP.INITIALIZE =>
DB_Map_IO.Open_List_File;
DBE.Records_1In_File := DB_Map_IO.Number_Of Maps;

when APP.STEADY => null;

when APP.FINALIZE =>
DB_Map_IO.Close_List_File;
end case;

when DBS.MAP =>
case STATUS is
when APP.INITIALIZE =>
begin
DB_Map_IO.Open_Map Files({ Name => DBI.Map_Name,

Mode => DB_Map_IO.Input);

exception
when DB_Map_IO.Invalid_Map_ Name =>
SIGNAIL_STATE := DBS.NOT_FOUND;
ond;

when APP.STEADY =>
DB_Map_IO.Open_Map_ Files(Name => DBI.Map_Name,
Mode => DB_Map_IO.Output);
DB_Map_ TIO.Put_Map_In_List(DBI.Map_Name);

when APP.FINALIZE =>
DB_Map_I0.Close_Map_Files;
end case;

when DBS.MAP_NAME =>
DB_Map_IO.Delete_Map_Files(DBI.Map_Name);
DB_Map_IO.Remove_Map_From_List(DBI.Map_ Name);

when DBS.VERTEX =>
DB_Map_IO.Put(DBI.Get_Vertex);

wher DBS.ARC =>
DB_Map_IO.Put(DBI.Get_Arc);

when DBS.LOGICAL_ID =>

DB_Map_IO.Put(DBI.Logical_Id_value);

when DBS.MODEL_LIST =>
case STATUS is
when APP.INITIALIZE =>
DB_Vehicle_IO.Open_Models_File;
DBE.Records_In_File := DB_Vehicle_IO.Number_ Of_Models;

when APP.STEADY => null:;

when APP.FINALIZE =>
DB_Vehicle_I0.Close_Models_File;
end case;

when DBS.MODEL =>
DB_Vehicle_l0.Put_Model(DBI.Get _Vehicle);

when DBS.MODEL_ID =>
DB_vVehicle_l10.Remove_Model (DBI.Get_Vehicle);

when DBS.VEHICLE_LIST =>
case STATUS is
when APP.INITIALIZE =>
DB_Vehicle_IO.Open_Vehicles_File;
DBE.Records_In_File :=
DB_Vehicle_IO.Number_Of_Vehicles;

when APP.STEADY => null;

when APP.FINALIZE =>
DB_Vehicle_IO.Close_Vehicles_File;
end case;

when DBS.SPECIFIC_VEHICLE =>
- DB_Vehicle_IO.Put_Vehicle(DBI.Get_vVehicle);

when DBS.VEHICLE_ID =>
DB_Vehicle_I0.Remove_Vehicle(DBI.Get_Vehicle);

when DBS.COMBINATION_LIST =>
case STATUS is
when APP.INITIALIZE =>
DB_Vehicle_I0.0pen_Combinations_File;
DBE.Records_In_File :=
DB_Vehicle_IO.Number_Of_Combinations;

when APP.STEADY => null;
when APP.FINALIZE =>

DB_Vehicle_IO.Close_Combinations_File;
ond case;

when DBS.VEHICLE_COMBINATION =>
DB_Vehicle_IO.Put_Combination(DBI.Get_Combination);

vwhen DBS.COMBINATION_ID => % . :
DB_Vehicle_IO.Remove_Combination(DBI.Get_Combination); i 3
H

when DBS.CONVOY_LIST =>

CMU/SEI-4TR-8

case STATUS is
when APP.INITIALIZE =>
DB_Convoy_I0.0Open_List_File;
DBE.Records_In_File := DB_Convoy_l0.Number_Of_Convoys;

when APP.STEADY => null;

when APP.FINALIZE =>
DB_Convoy_I0.Close_List_File;

end case;

when DBS.CONVOY =>
case STATUS is
when APP.INITIALIZE =>
DB_Convoy_JI0.Open_Convoy_Files(DBI.Convoy_Name,
DB_Convoy_IO.Input);

when APP.STEADY =>
DB_Convoy_I0.0Open_Convoy_Files(DBI.Convoy_Name,
DB_Convoy_IO.Output);

DB_Convoy_I0.Put_Convoy_In_List(DBI.Convoy_Name) ;

when APP.FINALIZE =>
DB_Convoy_10.Close_Convoy_Files;

end case;

when DBS.CONVOY_NAME =>
DB_Convoy_IO.Delete_Convoy_Files(DBI.Convoy_Name);
DB_Convoy_IO.Remove_Convoy_From List(DBI.Convoy_Name);

when DBS.ELEMENT =>
DB_Convoy_IO.Put(DBI.Get_Convoy_Part);

when DBS.PARAMETERS =>
DB_Convoy_IO0.Put(DBI.Get_Convoy_Parameters);

end case;
end Application_To_Device;

s Ai il s S 222222222 X2 2 R 2222222222 X222 22222222 222222222222 XXX2 2 X2

function Signal returm DBS.Status_Type is
Status : DBS.Status_Type := SIGNAL_STATE;
begin
SIGNAL_STATE := DBS.NORMAL; -- RESET upon READ!
retura Status;
emd Signal;

oy A A AR A AL A2 2 2 A2 2 2 SRR 22222 2R R 2R R YRR LT

begia
SIGNAL_STATE := DBS.INITIALIZED;

end Data_Base_Controller;

H.4.3 Data Base Signatures

package Data_Base_Signatures is

type Entity Type is (MAP_LIST, MAP, MAP_NAME, VERTEX, ARC, LOGICAL_ID,
MODEL_LIST, MODEL, MODEL_ID, VEHICLE_LIST,
SPECIFIC_VEHICLE, VEHICLE_ID, COMBINATION_LIST,
VEHICLE_COMBINATION, COMBINATION_ID, CONVOY_LIST,
CONVOY, CONVOY_NAME, ELEMENT, PARAMETERS);

type Status_Type is (INITIALIZED, NOT_FOUND, END_OF_FILE, NORMAL);

type Error_Type is record
STATUS : Status_Type;
ENTITY : Entity Type;
e * record;

end — i_Base_Signatures;

H.4.4 Data Base Types

with Convoy_Builder_Types;
with Vehicle_Types;

with Measurement_Types;
package DB_Types is

Max_Name_Length : comstant Positive := 20;
-- Data construct to store Convoy Vehicle and organization info.
package CBT renames Convoy_ Builder_Types;

type Convoy_Element_Type(Level : CBT.Levels_Type := CBT.Vehicle) is
record
case Level is
when CBT.Levels_Type’'last =>
Info : Vehicle_Types.Vehicle_Combination;

when others => null; -- will be Internal_Org info. in future!
end case;
end record;

-- Data constructs to store other Convoy dependent Parameters

subtype Number_Of_Levels is Natural range 0 ..
CBT.Levels_Type’'Pos(CBT.Levels_Type’'Last);

type Fixed_Gap_Data is array (Number_Of_Levels) of
Measurement_Types.Distance_Measurement;

type Governed_Gap_Data is array (Number_Of_Levels) of
Measurement_Types.Gap_Multiplier_Type;

type Int_Orged_Levels is array (Number_Of_Levels range <>) of
CBT.Levels_Type;

type Convoy_Parameters_Type(Governed : Boolean := True;
Org_Levels : Number_Of_Levels :=
Number_Of_Levels’Last) is
recoxd
Average_sSpeed : Measurement_Types.Rate_Measurement;
Org_Dbata : Int_Orged Levels(1 .. Org_Levels);
case Governed is
when True =>
Governed_Gaps : Governed_Gap_Data;
when False =>
Fixed_Gaps : Fixed_Gap_Data;
end case;
end recorxd;

ond DB_Types:;

H.4.5 Data Base imports (Specification)

with Vehicle_Types;

with Map_Types;

with DB_Types;

package Data_Rase_Imports is

function Get_Vehicle return Vehicle_Types.Vehicle_Type;

function Get_Combination returm Vehicle_Types.Vehicle_Combination;

function Map_Name return String;
function Get_Vertex returmn Map_Types.Vertex_Type:
function Get_Arc return Map_Types.Arc_Type:;

function Logical_Id_Value returm Natural;

function Convoy_Name retura String;
function Get_Convoy_Part return DB_Types.Convoy_ Element Type:;
function Get_Convoy_Parameters returmn DB_Types.Convoy_Parameters_Type;

end Data_Base_Imports;

H.4.6 Data Base Imports (Body)

with Asset_Manager_Exports;

with User_Interface_Exports;

with Convoy_Builder_Exports;

with Mapper_Exports;

package body Data_Base_Imports is

package AME renames Asset_Manager_ Exports;
package CBE renames Convoy_Builder_ Exports;
package MPE renames Mapper_Exports;
package UIE renames User_Interface_Exports;

function Get_Vehicle returm Vehicle_Types.Vehicle_Type is
begin

return AME.Vehicle;
, end Get_Vehicle;

function Get_Combination returm Vehicle_Types.Vehicle_Combination is
begin

return AME.Vehicle_Combination;
end Get_Combination;

function Map_Name return String is
begin

return UIE.Map_Name; S
end Map_Name; bt

CMU/SEL-04-TR-8

function Get_Vertex return Map_Types.Vertex_ Type is
begin

return MPE.Vertex;
end Get_Vertex;

function Get_Arc retura Map_Types.Arc_Type is
begin

return MPE.Arc;
end Get_Arc:;

function Logical_Id_Value return Natural is
begin

return UIE.Vertex_Id;
end Logical_Id_Value;

function Convoy_Name returm String is
begin

return UIE.Convoy_Name;
end Convoy_Name;

function Get_Convoy_Part return DB_Types.Convoy_Element Type is
begin

return CBE.Convoy_Part;
end Get_Convoy_Part;

function Get_Convoy_Parameters returm DB_Types.Convoy_ Parameters_Type is
begin

return CBE.Parameters;
end Get_Convoy_Parameters;

end Data_Base_Imports;

H.4.7 Data Base Exports

with Vehicle_Types;

with Map_Types;

with Default;

with DB_Types;

package Data_Base_Exports is

Records_In_File : Natural:;

Model_1Id : Vehicle_Types.Model_Type;

Vehicle_Id : Vehicle_Types.Specific_Vehicle_1Id;

Vehicle : Vehicle_Types.Vehicle_Type := Default.General_vVehicle;
' Combination : Vehicle_Types.Vehicle_Combination;

Convoy_Name : String(1 .. DB_Types.Max_Name_Length);
Convoy_Part : DB_Types.Convoy_Element_Type;
Convoy_Data : DB_Types.Convoy_Parameters_Type;

Map_Name : String(1 .. DB_Types.Max_Name_Length);
Vertex_Data : Map_Types.Vertex_Type:

Arc_Data : Map_Types.Arc_Type:

Logical_Id_Value : Natural;

ond Data_Base_Exports; : 2 :

§ 1% CMU/SEL-94TR-8 £
| :
H
!
H

H.4.8 Vehicle_|lO Handler (Specifiication)

with Vehicle_Types ;
package DB_Vehicle_IO is

procedure Open_Models_File;

function Number_Of_Models returm Natural;

procedure Put_Model(Vehicle : im Vehicle_Types.Vehicle_Type);
procedure Get_Model(Vehicle : out Vehicle_Types.Vehicle_Type);
procedure Remove_Model(Vehicle : in Vehicle_Types.Vehicle_Type);

procedure Close_Models_File;

procedure Open_Vehicles_File;

function Number_Of_Vehicles return Natural;

procedure Put_Vehicle(Vehicle : in Vehicle_Types.Vehicle_Type):
procedure Get_Vehicle(Vehicle : out Vehicle_Types.Vehicle_ Type);
procedure Remove_Vehicle(Vehicle : im Vehicle_Types.Vehicle_Type);

procedure Close_Vehicles_File;

procedure Open_Combinations_File;

function Number_Of_Combinations returm Natural;

procedure Put_Combination{ Combo : im Vehicle_Types.Vehicle_Combination);
procedure Get_Combination(Combo : out Vehicle_Types.Vehicle_Combination);

procedure Remove Combination{ Combo : in
Vehicle_Types.Vehicle_Combination);

procedure Close_Combinations_File;

End _Of_File : exception; -- raised by any Get that attempts a read past EOF

end DB_Vehicle_IO;

T - . B

H.4.9 Vehicle_IO Handler (Body)

with Direct_Io;
with File_Data;
package body DB_Vehicle_IO is

package Veh_IO is new Direct_IO(Vehicle_Types.Vehicle_Type):;
package Combo_IO is new Direct_IO(Vehicle_Types.Vehicle_Combination };

function *="(L, R : in Vehicle_Types.Model_Type) return Boolean
renames Vehicle_Types.*=*;

function *="(L, R : im Vehicle_Types.Specific_Vehicle_Id) returnm Boolean
renames Vehicle_Types.”"=";

function *="(L, R : in Vehicle_Types.Vehicle_Combination) return Boolean
renames Vehicle_Types.”"=";

Model_File : Veh_IO.File_Type;
Vehicle_File : vVeh_IO.File_Type:
Combination_File : Combo_IO.File_Type;

o XX X2 EXEZEERZEZE SRS 2 SRR RSS2SR 2Rt RRRRARRR RN

procedure Open_Models_File is
begin
Veh_IO.0Open(File => Model_File,
Mode => Veh_Io.Inout_File,
Name => File_Data.Path & “Models.LST*");
exception
when Veh_IO.Name_Error

v

Veh_IO.Create(File => Model_File,
Mode => Veh_Io.Inout_File,
Name => File_Data.Path & “Models.LST*);

when others => zaise;
end Open_Models_File;

function Number_Of Models returm Natural is
begin
return Natural(Veh_IO.Size(Model_File)} };
exception
, when others => rxeturm 0;
¥ end Number_Of_Models;

procedure Put_Model(Vehicle : im Vehicle_ Types.Vehicle_Type) is

DB_Data : Vehicle_Types.Vehicle_Type;
Written : Boolean := False;
begin

for Index in 1..Veh_10.Size(Model_File) loop
Veh_IO.Read(File => Model_File,
Item => DB_Data,
From => Index);
if DB_Data.Properties.Model = Vehicle.Properties.Model then
Veh_Jo.Write(File => Model_File,
Item => Vehicle,
To => Index);
Written := True; E-
exit; i
end if; '

——

and loop:
if not Written then
Veh_lo.Write(File => Model_File,
Item => Vehicle);
end if;
end Put_Model;

procedure Get_Model(Vehicle : out Vehicle_Types.Vehicle Type) is
begin
Veh_IO.Read(File => Model_File,
Item => Vehicle);
exception
when Veh_Io.End_Error => raise End_Of_File;
end Get_Model:;

procedure Remove_Model(Vehicle : in Vehicle_Types.Vehicle _Type) is
DB_Data : Vehicle_Types.Vehicle_ Type;
Temp_File : Veh_IO.File_Type;
begin
veh_IO.Create(File => Temp_File,
Mode => Veh_IO.Inout_File,
Name => File_Data.Path & “Models.TLST”):
for Index im 1..Veh_I10.Size(Mode)_File) loop
Veh_IO.Read(File => Model_File,
Item => DB_Data,
From => Index);
if DB_Data.Properties.Model /= Vehicle.Properties.Model then
Veh_IO.Write{ File => Temp_File,
Item => DB_Data):
end if;
end loop:;
Veh_Io.Delete(Model_File);
Veh_IO.Create(File => Model_File,
Mode => Veh_IO.Inout_File,
Name => File_Data.Path & “Models.LST”);
for Index im 1..Veh_I0.Size(Temp_File) loop
Veh_I0.Read(File => Temp_File,
Item => DB_Data,
From => Index);
Veh_IO.Write(File => Model_File,
Item => DB_Data);
end loop:;
Veh_IO.Delete(Temp_File);
end Remove_Model;

procedure Close_Models_File is
begin

Veh_I0.Close(Model_File };
oend Close_Models_File;

peves JAA AR AR AL RS R ARl s a2 22222222 222X X222 222 222 2dR]

procedure Open_Vehicles_File is
begin
Veh_IO.Open(File => Vehicle_File,
Mode => Veh_Io.Inout_File,
Name => Pile_Data.Path & “Vehicles.LST”);
exception
when Veh _IO.Name_Error =>

CMU/SE-94-TR-8

&

Veh_IO.Create(File => Vehicle_File,
Mode => Veh_Io.Inout_File,
Name => File_Data.Path & *Vehicles.LST”");
when others => raise;
end Open_Vehicles_File;

function Number_Of_Vehicles return Natural is
begin

return Natural(Veh_IO.Size(Vehicle_File));
exception

when others => return 0;
end Number_Of_Vehicles;

procedure Put_Vehicle(Vehicle : in Vehicle_Types.Vehicle _Type) is
DB_Data : Vehicle_Types.Vehicle_Type;
Written : Boolean := False;
begin
for Index in 1..veh_I0.Size(Vehicle_File) loop
Veh_IO.Read(File => Vehicle_File,
Item => DB_Data,
From => Index);
if DB_Data.Vehicle_Id = Vehicle.Vehicle_Id then
Veh_Io.Write(File => Vehicle_File,
Item => Vehicle,
To => Index):
Written := True;
exit;
end if;
end loop;
if not Written then
Veh_Io.Write(File => Vehicle_File,
Item => Vehicle);
end if;
end Put_Vehicle;

procedure Get_Vehicle(Vehicle : out Vehicle_Types.Vehicle_Type) is
begin
Veh_IO.Read{ File => Vehicle_File,
Item => Vehicle);
exception
when Veh_Io.End_Error => raise End _Of_File;
end Get_Vehicle;

procedure Remore_Vehicle(Vehicle : in Vehicle_Types.Vehicle _Type) is
DB_Data : Vehicle_Types.Vehicle_Type:;
Temp_File : Veh_IO.File_Type;
begin
Veh_IO.Create(File => Temp_File,
Mode => Veh_IO.Inout_File,
Name => File_Data.Path & “Vehicles.TLST"):;
for Index im 1..Veh_IO.Size(Vehicle_File) loop
Veh_IO.Read(File => Vehicle_File,
Item => DB_Data,
From => Index);
if DB_Data.Vehicle_Id /= Vehicle.Vehicle_Id then
Veh_IO.Write(File => Temp_File,
Item => DB_Data);
end if;
end loop:

140

CMU/SEI-94-TR-8

:
L
¥
L3
f
b
4
¥

Veh_Io.Delete(Vehicle_File);
Veh_IO.Create(File => Vehicle_File,
Mode => Veh_IO.Inout_File,
Name => File_Data.Path & “Vehicles.LST");
for Index im 1..Veh_IO.Size(Temp_File) loop
Veh_IO.Read(File => Temp_File,
Item => DB_Data,
From => Index);
Veh_IO.Write(File => Vehicle_File,
Item => DB_Data);
end loop:;
Veh_IO.Delete{ Temp_File);
end Remove_Vehicle;

procedure Close_Vehicles_File is
begin

Veh_JO.Close(Vehicle_File);
end Close_Vehicles_File;

e A A A EAA LR RS AR RS RS RR ARl AR iSRS RES XX R 2)

procedure Open_Combinations_File is
begin
Combo_10.0pen{ File => Combination_File,
Mode => Combo_Io.Inout_File,
Name => File_Data.Path & “Combinations.LST”");
exception
when Combo_IO.Name_Error =>
Combo_I0.Create(File => Combination_File,
Mode => Combo_Io.Inout_File,
Name => File Data.Path & “Combinations.LST”);
when others => raise;
end Open_Combinations_File;

function Number_ Of_Combinations return Natural is
begin

return Natural(Combo_JO.Size(Combination_File));
exception

when others => returm 0;
end Number_Of_Combinations;

procedure Put_Combination
(Combo : in Vehicle_Types.Vehicle_Combination) is
DB_Data : Vehicle_Types.Vehicle_Combination;
Written : Boolean := False;
begin
for Index imn 1..Combo_I0.Size(Combination_File) loop
Combo_I0.Read(File => Combination_File,
Item => DB_Data,
From => Index);
if DB_Data = Combo then
Combo_Io.Write(File => Combination_File,
Item => Combo,
To => Index); .
) Written := True; 3
exit; ;
end if;
end loop:
if not Written then

CMU/SES-94-TR-8 141

Combo_Io.Write(File => Combination_File,
Item => Combo);
end 1if;
end Put_Combination;

procedure Get_Combination
(Combo : out Vehicle_Types.Vehicle_Combination) is

begin

Combo_I0.Read(File => Combination_File,

Item => Combo);

exception

when Combo_lo.End_Error => raise End_Of_File;
end Get_Combination;

procedure Remove_Combination
(Combo : in Vehicle_Types.Vehicle_Combination) is
DB_Data : Vehicle_Types.Vehicle_Combination;
Temp_File : Combo_IO.File_Type:;
begin
Combo_IO.Create(File => Temp_File,
Mode => Combo_IO.Inout_File,
Name => File_Data.Path & “Combinations.TLST”");
for Index in 1..Combo_I0.Size(Combination_File) loop
Combo_IO.Read(File => Combination_File,
Item => DB_Data,
From => Index);
if DB_Data /= Combo then
Combo_IC.Write(File => Temp_File,
Item => DB_Data);
end if;
end loop;
Combo_Io.Delete{ Combination_File);
Combo_Io.Create(File => Combination_File,
Mode => Combo_IO.Inout_File,
Name => File_Data.Path & “Combinations.LST”);
for Index in 1..Combo_I0.Size(Temp_File) loop
Combo_IO.Read(File => Temp_File,
Item => DB_Data,
From => Index);
Combo_IO.Write{ File => Combination_File,
Item => DB_Data);
end loop:;
Combo_IO.Delete(Temp_File);
end Remove_Combination;

procedure Close_Combinations_File is

begin
Combo_IO.Close(Combination_File);
end Close_Combinations_File;

end DB_Vehicle_IO;

142 CMU/SEI-94-TR-8

UNLIMITED, UNCLASSIFED
SECURITY CLASSIFICATION OF THIS PAGE

I REPORT DOCUMENTATION PAGE !

i 1a. REPORT SBCURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
' Unclassified None
' u secunmr CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPOKT
‘ Approved for Public Release
DBCI..ASSIFICA’HONIDOWNGRADING SCHEDULE Distribution Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-94-TR-8 ESC-TR-94-008
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICESYMBOL | 7a. NAME OF MONTTORING ORGANIZATION
Software Engineering Institute é‘;‘;"""""" SEI Joint Program Office
6¢c. ADDRESS (city, state, and zip code) 7Tb. ADDRESS (city, state, and zip code)
Carnegie Mellon University HQ ESC/ENS
Pittsburgh PA 15213 5 Eglin Street
Hanscom AFB, MA 01731-2116
ugg&mmmso&ms (81:_ ;g;ﬂcblli ?YMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
. " appricable. F1962890C0003
SE! Joint Program Office ESC/ENS
8c. ADDRESS (city, state, and zip code)) 10. SOURCE OF FUNDING NOS.
gamegie Mpellon University PROGRAM PROJECT TASK WORK UNIT
ittsburgh PA 15213 .
g 63756E N/A N/A N/A

11. TITLE (Inctude Security Classification)

Mapping a Domain Model and Architecture to a Generic Design

12. PERSONAL AUTHOR(S)

A_ Spencer Peterson, Jay L. Stanley, Jr.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Final FROM T May 1994 162

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (coatinue on of y and identify by block number)

19. ABSTRACT (continue on reverse if necessary and identify by block number)

in contrast to the number of reports on domain analysis, little work has been done in describing the

utilization of domain analysis results in the development of generic designs for building applications

in a domain. This report describes a process for mapping domain information in Feature-Oriented

f Domain Analysis (FODA) into a generic design for a domain. The design includes supporting code

? components that conform to the Object Connection Architecture (OCA), a model for structuring soft-
ware systems. A process for the use of the design in implementing applications is included. The pro-
cesses and products described herein augment the final phase of domain analysis (or engineering)

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
uncLasseovunLartep] sameaswe{] oncusers]| Unclassified, Unlimited Distribution

222. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (inclade arcs code)
Thomas R. Miller, Lt Col, USAF (412) 268-7631

DD FORM 1473, 83 APR EDETION of | JAN 73 1S OBSOLETE UNLIMITED, UNCLASSIFIED c eaerm

— coatinued from page oae, block 19

described in the original FODA report. This report also documents the continuing work of apply-
ing FODA to the movement control domain. The design and Ada code examples for the domain
used in the document are from prototype software, created in part to test the processes pre-

sented.

